Publication Type : Journal Article
Source : In International Conference on Web-Based Learning (ICWL 2019). Lecture Notes in Computer Science, Springer, Cham, 2019
Campus : Amritapuri
Year : 2019
Abstract : In learning situations that do not occur exclusively online, the analysis of multimodal evidence can help multiple stakeholders to better understand the learning process and the environment where it occurs. However, Multimodal Learning Analytics (MMLA) solutions are often not directly applicable outside the specific data gathering setup and conditions they were developed for. This paper focuses specifically on authentic situations where MMLA solutions are used by multiple stakeholders (e.g., teachers and researchers). In this paper, we propose an architecture to process multimodal evidence of learning taking into account the situation’s contextual information. Our adapter-based architecture supports the preparation, organisation, and fusion of multimodal evidence, and is designed to be reusable in different learning situations. Moreover, to structure and organise such contextual information, a data model is proposed. Finally, to evaluate the architecture and the data model, we apply them to four authentic learning situations where multimodal learning data was collected collaboratively by teachers and researchers.
Cite this Research Publication : Shankar, S. K., Ruiz-Calleja, A., Prieto, L. P., Rodríguez-Triana, M. J., & Chejara, P. (2019, September). An architecture and data model to process multimodal evidence of learning. In International Conference on Web-Based Learning (ICWL 2019). Lecture Notes in Computer Science, Springer, Cham, 11841 (pp. 72-83). https://doi.org/10.1007/978-3-030-35758-0_7
[2018]