Publication Type : Journal Article
Source : In European Conference on Technology Enhanced Learning (EC-TEL 2019). Lecture Notes in Computer Science, Springer, Cham, 2019
Url : https://link.springer.com/chapter/10.1007/978-3-030-29736-7_62
Campus : Amritapuri
Verified : No
Year : 2022
Abstract : Multimodal Learning Analytics (MMLA) has sparked researcher interest in investigating learning in real-world settings by capturing learning traces from multiple sources of data. Though multimodal data offers a more holistic picture of learning, its inherent complexity makes it difficult to understand and interpret. This paper illustrates the use of dimensionality reduction (DR) to find a simple representation of multimodal learning data collected from co-located collaboration in authentic settings. We employed multiple DR methods and used triangulation to interpret their result which in turn provided a more simplistic representation. Additionally, we also show how unexpected events in authentic settings (e.g., missing data) can affect the analysis results.
Cite this Research Publication : Chejara, P., Prieto, L. P., Ruiz-Calleja, A., Rodríguez-Triana, M. J., & Shankar, S. K. (2019, September). Exploring the triangulation of dimensionality reduction when interpreting multimodal learning data from authentic settings. In European Conference on Technology Enhanced Learning (EC-TEL 2019). Lecture Notes in Computer Science, Springer, Cham, 11722 (pp. 664-667). https://doi.org/10.1007/978-3-030-29736-7_62