Publication Type : Journal Article
Source : Smart Science., 2023
Campus : Amritapuri
School : School of Engineering
Department : Electrical and Electronics
Year : 2023
Abstract : In today’s smart communities, small-scale energy systems are essential for sustainable development and efficient resource management. However, ensuring the confidentiality, safety, and accurate prediction of energy consumption patterns in energy trading is a major challenge. To address these issues, an innovative solution that synergistically combines two cutting-edge technologies: blockchain and machine learning is proposed. This paper unveils a novel approach that harmoniously merges blockchain with the Recalling-Enhanced Recurrent Neural Network (RERNN) to revolutionize energy trading systems called ‘Blockchain-Enhanced Energy Trading with Recalling-Enhanced Recurrent Neural Network (BET-RERNN).’ Data from IoT-enabled smart devices is securely stored in blockchain blocks, ensuring data integrity and immutability. Blockchain’s decentralized nature creates a trust-less environment for energy trading, protecting the privacy and anonymity of participants while maintaining transparency. At the heart of our system lies the advanced machine-learning capabilities of the RERNN model. By processing the data stored on the blockchain, RERNN accurately predicts optimal power generation for small-scale energy systems, enabling smart communities to make informed decisions and optimize their energy consumption. The BET-RERNN scheme provides a plethora of strengths. First, participants can securely engage in energy trading without compromising sensitive information, fostering a more resilient and efficient market. Second, blockchain technology ensures that all energy-related data is protected from tampering and unauthorized access, ensuring system reliability and trust. An in-depth comparison of RERNN’s performance to traditional General Regression Neural Network (GRNN) and Gradient Boost Decision Tree (GBDT) methods is conducted. To verify the strategy’s effectiveness, MATLAB simulations are employed, demonstrating its real-world applicability and scalability. By combining blockchain and machine learning, a secure and privacy-preserving smart community is established, promoting sustainable energy practices for a greener future.
Cite this Research Publication : Jayavarma, A., Preetha, Nair, M.G., "A secure energy trading in a smart community by integrating Blockchain and machine learning approach",Smart Science., 2023