Back close

Machine Learning Identification of Organic Compounds Using Visible Light

Publication Type : Journal Article

Publisher : ACS

Url : https://pubs.acs.org/doi/10.1021/acs.jpca.2c07955

Campus : Amaravati

School : School of Engineering

Department : Computer Science and Engineering

Year : 2023

Abstract : Identifying chemical compounds is essential in several areas of science and engineering. Laser-based techniques are promising for autonomous compound detection because the optical response of materials encodes enough electronic and vibrational information for remote chemical identification. This has been exploited using the fingerprint region of infrared absorption spectra, which involves a dense set of absorption peaks that are unique to individual molecules, thus facilitating chemical identification. However, optical identification using visible light has not been realized. Using decades of experimental refractive index data in the scientific literature of pure organic compounds and polymers over a broad range of frequencies from the ultraviolet to the far-infrared, we develop a machine learning classifier that can accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols and applications.

Cite this Research Publication : Thulasi Bikku, Rubén A. Fritz, Yamil J. Colón, and Felipe Herrera*"Machine Learning Identification of Organic Compounds Using Visible Light"

Admissions Apply Now