Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Women in Sustaining the Environment (WISE) Progress Report
Women in Sustaining the Environment (WISE) Progress Report
E-bike
E-bike
Video Summarization and Annotation for Content Based Retrieval
Video Summarization and Annotation for Content Based Retrieval
Development of high volume fly ash foam concrete wall Panel using rice straw as thermal insulation material
Development of high volume fly ash foam concrete wall Panel using rice straw as thermal insulation material
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Admissions Apply Now