Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Cancer Discovery Biology
Cancer Discovery Biology
Investigation on High Performance Nano Adhesive Bonding of Ultra High Temperature Resistant Polymer and its Performance under Space Environments
Investigation on High Performance Nano Adhesive Bonding of Ultra High Temperature Resistant Polymer and its Performance under Space Environments
Super Resolution of Mammograms for Breast Cancer Detection
Super Resolution of Mammograms for Breast Cancer Detection
Small Molecular Theranostic for Selective Molecular Imaging and Targeted Delivery of Chemotherapeutics to the Tumors
Small Molecular Theranostic for Selective Molecular Imaging and Targeted Delivery of Chemotherapeutics to the Tumors
Energy Management on Smart Grid using Embedded Systems
Energy Management on Smart Grid using Embedded Systems
Admissions Apply Now