Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Medical Signal Processing using IoT Devices
Medical Signal Processing using IoT Devices
Nanosurface Engineering of Bare Metallic Coronary Stents for Combating In-Stent Restenosis
Nanosurface Engineering of Bare Metallic Coronary Stents for Combating In-Stent Restenosis
Development of Text / Language Independent Speaker Recognition System
Development of Text / Language Independent Speaker Recognition System
Planar Resonator based Sensor for Adulteration Detection
Planar Resonator based Sensor for Adulteration Detection
Rural Healthcare for Diabetes and Tuberculosis
Rural Healthcare for Diabetes and Tuberculosis
Admissions Apply Now