Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Artificial Intelligence based Self-Healing Protection in Smart Grid
Artificial Intelligence based Self-Healing Protection in Smart Grid
Wearable Diagnostic Device for Monitoring Vital Parameters in Sweat
Wearable Diagnostic Device for Monitoring Vital Parameters in Sweat
Development of High Volume Flyash Foam Concrete Wall Panel Using Rice Straw as Thermal Insulation Material
Development of High Volume Flyash Foam Concrete Wall Panel Using Rice Straw as Thermal Insulation Material
Characterization of Surface and Groundwater During a Natural Disaster
Characterization of Surface and Groundwater During a Natural Disaster
Remote Triggered Wireless Sensor Network Lab
Remote Triggered Wireless Sensor Network Lab
Admissions Apply Now