Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Center for Digital Health (Wireless Telemedicine)
Center for Digital Health (Wireless Telemedicine)
Generation of Induced Pluripotent Stem (iPS) Cells from Genetically Altered Somatic cells
Generation of Induced Pluripotent Stem (iPS) Cells from Genetically Altered Somatic cells
Fabrication of a Lab-on-a-Chip Device for the Point of Care Testing of Hemoglobin
Fabrication of a Lab-on-a-Chip Device for the Point of Care Testing of Hemoglobin
Use of Drones to Effectively Rescue Trapped Victims in Collapsed Buildings
Use of Drones to Effectively Rescue Trapped Victims in Collapsed Buildings
Isolation of lectins and colored proteins from marine algae
Isolation of lectins and colored proteins from marine algae
Admissions Apply Now