Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Development of Porous Structured Scaffold for Bone Implants
Development of Porous Structured Scaffold for Bone Implants
Purification of Fibronectin Using Gelatin-Polymer Conjugates
Purification of Fibronectin Using Gelatin-Polymer Conjugates
Kochi Intervention for Tobacco Smoking Cessation and Smoke Free Homes – KIFT
Kochi Intervention for Tobacco Smoking Cessation and Smoke Free Homes – KIFT
Strengthening Multi-Stakeholders to Address Gender Based Violence (GBV): A Community-Led Initiative in Kolar District, Karnataka
Strengthening Multi-Stakeholders to Address Gender Based Violence (GBV): A Community-Led Initiative in Kolar District, Karnataka
Psychiatry and Disorders
Psychiatry and Disorders
Admissions Apply Now