Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Online Testing of IC Engines
Online Testing of IC Engines
Synthesis and Preliminary Evaluation of Ring
Synthesis and Preliminary Evaluation of Ring
Genetic Disease Prediction by DNA Assembly and Graph Analysis 
Genetic Disease Prediction by DNA Assembly and Graph Analysis 
Integrative Health and Wellbeing – Strengthening Tribal Health with Preventative Care and Awareness
Integrative Health and Wellbeing – Strengthening Tribal Health with Preventative Care and Awareness
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Admissions Apply Now