Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

AgriTech Precision
AgriTech Precision
Cow-kin: Smart and Precision Animal Farming for the Health and Welfare of the Cattle
Cow-kin: Smart and Precision Animal Farming for the Health and Welfare of the Cattle
Enhancement of Biodegradative Activity in Commercial and Lab Scale Compost Preparations with Lignocelluloytic fungi and nitrogen fixing bacteria as supplements- A Comparative Study
Enhancement of Biodegradative Activity in Commercial and Lab Scale Compost Preparations with Lignocelluloytic fungi and nitrogen fixing bacteria as supplements- A Comparative Study
Semantic Integration of Heterogeneous Sources 
Semantic Integration of Heterogeneous Sources 
iNTD Workshop
iNTD Workshop
Admissions Apply Now