Back close

Lightweight, Privacy-Preserving and Usable Security Solutions for Internet of Things

Project Incharge:Dr. Nimmy K.
Co-Project Incharge:Dr. Prasad Calyam, University of Missouri, USA

The Internet of Things (IoT) is already pervasive and has completely transformed the world by giving us access to real-time information. However, IoT security concerns have attracted much interest from academia and industry. IoT devices are more vulnerable due to weak password settings, lack of encryption and incorrect access control, thus needing robust security measures. However, existing IoT devices do not sufficiently handle the increased security requirements posed by such vulnerabilities. Furthermore, many recent IoT device attacks have shown the need for robust security solutions to protect the developing IoT infrastructure. This dissertation develops lightweight, privacy-preserving, and usable security solutions to safeguard the IoT. Remote user and IoT device authentication being the primary concerns, authentication protocols are proposed and analyzed for IoT and its applications in Smart Home and industrial settings. Moreover, attack detection in IoT devices can also be an effective solution to secure IoT devices from cyberattacks. Further, we propose an Anomaly Detection System (ADS) to track abnormal activities and detect zero-day attacks. 

Outcome

Related Projects

An Adaptive Shunt Hybrid Filter for Power Quality Enhancement
An Adaptive Shunt Hybrid Filter for Power Quality Enhancement
Development of Lab-on-a-Chip for the Early Detection of Cancer in Women
Development of Lab-on-a-Chip for the Early Detection of Cancer in Women
GEL-IoT: Geospatially Enabled Learning approaches for Intelligent IoT based water quality monitoring
GEL-IoT: Geospatially Enabled Learning approaches for Intelligent IoT based water quality monitoring
Pedagogy
Pedagogy
Haemoglobin Assessment
Haemoglobin Assessment
Admissions Apply Now