Back close

Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

Project Incharge:Dr. S. Subbulakshmi
Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

With the explosion of healthcare information, there has been a tremendous amount of heterogeneous Textual Medical Knowledge (TMK), which plays an essential role in healthcare information systems. Knowledge graphs (KGs) enable better data representation and knowledge inference by arranging and incorporating the TMK into graphs. It automatically obtains knowledge from knowledge graphs with high precision, by focusing on taxonomy with individual health, their medications, brands, pricing, etc. To build a high quality and thorough clinical Knowledge Graph (KG), Spark NLP Relation Extraction (RE) Models and Neo4j Graph DB are used. Main aim is to provide a thorough taxonomy and a general view of healthcare KG construction It could provide insights into the patient’s history of medication, the results of various clinical tests, the efficacy of the treatment, and details about the drugs.

Related Projects

Integrative Health and Wellbeing – Strengthening Tribal Health with Preventative Care and Awareness
Integrative Health and Wellbeing – Strengthening Tribal Health with Preventative Care and Awareness
Wearable Wireless Device to Monitor of Vital Parameters of Farmers
Wearable Wireless Device to Monitor of Vital Parameters of Farmers
Women Empowerment through Skill Development & Income Generation
Women Empowerment through Skill Development & Income Generation
Object Oriented Approach To Context Based Image Retrieval
Object Oriented Approach To Context Based Image Retrieval
KaraChara- Hand Orthosis for Rehabilitation of Stroke Patients
KaraChara- Hand Orthosis for Rehabilitation of Stroke Patients
Admissions Apply Now