Back close

Neuroscience and Robotics

Neuroscience and Robotics

Our projects propose to develop a brain-inspired pattern recognition algorithm for multiple tasks including robotic trajectory tracking and data classification. At the current phase, the project aims to investigate the temporal and spatial dynamics in the cerebellar network models capable of predicting cerebellar input-output transformations by analyzing the mathematical and computational properties of the neural circuits.

The proposal is to exploit biophysical neural network models to the problem of pattern recognition and navigation in mobile robots to achieve practical algorithms for specific applications like surgery or disaster mitigation. Unlike many projects, this project will rely on biological basis for design and function of a pattern classifier that can be used in motor articulation.

References

  • Asha Vijayan, Chaitanya Nutakki, Dhanush Kumar, Dr. Krishnashree Achuthan, Dr. Bipin G. Nair, and Dr. Shyam Diwakar, “Enabling a freely accessible open source remotely controlled robotic articulator with a neuro-inspired control algorithm”, International Journal of Interactive Mobile Technologies, vol. 13, no. 1, pp. 61-75, 2017. 

Related Projects

Haemoglobin Assessment
Haemoglobin Assessment
IoT Based Women Security System
IoT Based Women Security System
Blockchain-based Peer to Peer Energy Trading
Blockchain-based Peer to Peer Energy Trading
Segmentation and tracking of ovarian tumours from ovarian CT images 
Segmentation and tracking of ovarian tumours from ovarian CT images 
Multi-User Detection in Sporadic 3GPP Massive M2M Communication via Compressed Sensing
Multi-User Detection in Sporadic 3GPP Massive M2M Communication via Compressed Sensing
Admissions Apply Now