Publication Type : Book
Source : (2018)
Campus : Coimbatore
School : School of Engineering
Center : Computational Engineering and Networking, Electronics Communication and Instrumentation Forum (ECIF)
Department : Center for Computational Engineering and Networking (CEN), Electronics and Communication
Year : 2018
Abstract : Deep neural networks (DNNs) have witnessed as a powerful approach in this year by solving long-standing Artificial intelligence (AI) supervised and unsupervised tasks exists in natural language processing, speech processing, computer vision and others. In this paper, we attempt to apply DNNs on three different cyber security use cases: Android malware classification, incident detection and fraud detection. The data set of each use case contains real known benign and malicious activities samples. These use cases are part of Cybersecurity Data Mining Competition (CDMC) 2017. The efficient network architecture for DNNs is chosen by conducting various trails of experiments for network parameters and network structures. The experiments of such chosen efficient configurations of DNNs are run up to 1000 epochs with learning rate set in the range [0.01-0.5]. Experiments of DNNs performed well in comparison to the classical machine learning algorithm in all cases of experiments of cyber security use cases. This is due to the fact that DNNs implicitly extract and build better features, identifies the characteristics of the data that lead to better accuracy. The best accuracy obtained by DNNs and XGBoost on Android malware classification 0.940 and 0.741, incident detection 1.00 and 0.997, and fraud detection 0.972 and 0.916 respectively. The accuracy obtained by DNNs varies-0.05%, +0.02%,-0.01% from the top scored system in CDMC 2017 tasks.
Cite this Research Publication : V. R, Hb, B. Ganesh, Poornachandran, P., Kumar, M., and Dr. Soman K. P., Deep-Net: Deep Neural Network for Cyber Security Use Cases. 2018.