Back close

Course Detail

Course Name Mathematics for Computer Science
Course Code 18MA611
Program M. Tech. in Computer Science & Engineering
Semester 1
Credits Coimbatore
Year Taught 2018

Syllabus

Linear Algebra for Computer Science

Vector – Vector operations – Advanced Vector operations – Slicing and Dicing – Linear transformations and Matrices – Principle of Mathematical Induction – Special Matrices – Vector Spaces – Span, Linear Independence, and Bases – Orthogonal Vectors and Spaces – Linear Least Squares – Eigenvalues, Eigenvectors, and Diagonalization – Applications in Computer Science.

Probability and Statistics for Computer Science

Introduction to Statistics and Probability – Probability and Conditioning – Conditional Probability – Baye’s rule – Random variables – Expectation and Variance – Covariance – Discrete and Continuous Distributions – Central Limit Theorem – Statistics and Parameter estimation – Confidence intervals and Hypothesis testing.

Course Outcome

Upon Completion of the Course, the Student Will be Able to;

Course Outcome Bloom’s Taxonomy Level
CO 1 Understand the key techniques and theory behind the type of random variable and distribution L2
CO 2 Use effectively the various algorithms for applications involving probability and statistics in computing (data analytics) L3
CO 3 Evaluate and Perform hypothesis testing and to conclude L4, L5
CO 4 Design and build solutions for a real world problem by applying relevant distributions L4, L5

Text Books

Linear Algebra for Computer Science

  • Ernest Davis, “Linear Algebra and Probability for Computer Science Applications”,CRC Press, 2012.
  • Gilbert Strang, “Introduction to Linear Algebra”, Fourth Edition, Wellelsley- Cambridge Press, 2009.
  • Howard Anton and Chris Rorrers,”Elementary Linear Algebra”, Tenth Edition, 2010 John Wiley & Sons, Inc.

Probability and Statistics for Computer Science

  1. David Forsyth, “Probability and Statistics for Computer Science”, Springer international publishing, 2018
  2. Ernest Davis, “Linear Algebra and Probability for Computer Science Applications”,CRC Press, 2012.
  3. Douglas C. Montgomery and George C. Runger, “Applied Statistics and Probability for Engineers”, Third Edition, John Wiley & Sons Inc., 2003.
  4. Ronald E. Walpole, Raymond H Myres, Sharon.L.Myres and Kying Ye, “Probability and Statistics for Engineers and Scientists”, Seventh Edition, Pearson Education, 2002.
  5. A. Papoulis and Unnikrishna Pillai, “Probability, Random Variables and Stochastic Processes”, Fourth Edition, McGraw Hill, 2002.

‘Mathematics for Computer Science’ is a course offered in the first semester of M. Tech., in Computer Science and Engineering at School of Engineering, Amrita Vishwa Vidyapeetham.

DISCLAIMER: The appearance of external links on this web site does not constitute endorsement by the School of Biotechnology/Amrita Vishwa Vidyapeetham or the information, products or services contained therein. For other than authorized activities, the Amrita Vishwa Vidyapeetham does not exercise any editorial control over the information you may find at these locations. These links are provided consistent with the stated purpose of this web site.

Admissions Apply Now