Back close

Antibacterial and bioactive α- And β-chitin hydrogel/ nanobioactive glass ceramic/nano silver composite scaffolds for periodontal regeneration

Publication Type : Journal Article

Thematic Areas : Nanosciences and Molecular Medicine

Publisher : Journal of Biomedical Nanotechnology

Source : Journal of Biomedical Nanotechnology, Volume 9, Number 11, p.1803-1816 (2013)

Url : http://www.scopus.com/inward/record.url?eid=2-s2.0-84883691929&partnerID=40&md5=86d47260339de2286be15097333761d5

Keywords : absorption, alpha chitin hydrogel, Anti-bacterial activity, Anti-Bacterial Agents, article, Bacterial Physiological Phenomena, beta chitin hydrogel, Bioactive glass, bioactive glass ceramic nanoparticle, biodegradation, Biomechanics, biomineralization, Bone, cell adhesion, cell proliferation, cell viability, Cells, chitin, chitin derivative, Chitin hydrogel, controlled study, Cultured, Cytology, Defects, Drug Implants, Equipment Design, Equipment Failure Analysis, Fibroblasts, Glass, Glass ceramics, Guided Tissue Regeneration, Humans, Hydrogels, in vitro study, lipophilicity, Materials Testing, Mechanical properties, Mechanics, Metal Nanoparticles, Nano silver, Nanocomposite scaffolds, Nanocomposites, nanoparticle, Nanoparticles, Periodontal, Periodontal regeneration, periodontics, porosity, Scaffolds (biology), Silver, silver nanoparticle, Tissue Scaffolds, unclassified drug

Campus : Kochi

School : School of Dentistry, Center for Nanosciences

Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences

Department : Periodontics, Nanosciences and Molecular Medicine

Year : 2013

Abstract : Alveolar bone loss and bone defects are the commonly encountered periodontal problems. Large defects do not heal spontaneously and thus require surgical interventions with bone substitutes. Bone grafts have the disadvantages of eliciting an immunologic response with subsequent graft rejection. The success rate of Guided Tissue Regeneration (GTR) is variable because of high susceptibility to infection. Thus emerged the important role of synthetic biomaterials and hence for this purpose we developed a nanocomposite scaffold, using α- and β-chitin hydrogel with bioactive glass ceramic nanoparticles (nBGC) and silver nanoparticles (nAg) by lyophilization technique (α- and β-chitin hydrogel/nBGC/nAg nanocomposite scaffold). The prepared nanoparticles and nanocomposite scaffolds were characterized. In addition, the porosity, swelling, mechanical properties, antibacterial activity, in vitro degradation and biomineralization, cell viability, cell attachment and cell proliferation ability of the prepared composite scaffolds were also evaluated. The results showed that α- and β-chitin/nBGC/nAg composite scaffolds were porous and have the capacity to absorb fluids and swell. The composite scaffolds also showed enhanced antibacterial activity, bioactivity and controlled degradation in comparison to the control scaffolds. Cell viability studies proved the non-toxic nature of the nanocomposite scaffolds. Cell attachment and cell proliferation studies revealed the attachment and spreading nature of cells. All these studies revealed that, these antibacterial nanocomposite scaffolds could be a promising approach for the management of periodontal defects. Copyright © 2013 American Scientific Publishers All rights reserved.

Cite this Research Publication : Sowmya Srinivasan, Kumar, P. T. Sudheesh, Nair, S. V., Chennazhi, K. P., and Dr. Jayakumar Rangasamy, “Antibacterial and bioactive α- And β-chitin hydrogel/ nanobioactive glass ceramic/nano silver composite scaffolds for periodontal regeneration”, Journal of Biomedical Nanotechnology, vol. 9, pp. 1803-1816, 2013.

Admissions Apply Now