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for Sensor Networks Composed of Nonlinearly
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Abstract—In this paper, we propose a decentralized sensor net-
work scheme capable to reach a globally optimum maximum-like-
lihood (ML) estimate through self-synchronization of nonlinearly
coupled dynamical systems. Each node of the network is composed
of a sensor and a first-order dynamical system initialized with the
local measurements. Nearby nodes interact with each other ex-
changing their state value, and the final estimate is associated to
the state derivative of each dynamical system. We derive the con-
ditions on the coupling mechanism guaranteeing that, if the net-
work observes one common phenomenon, each node converges to
the globally optimal ML estimate. We prove that the synchronized
state is globally asymptotically stable if the coupling strength ex-
ceeds a given threshold. Acting on a single parameter, the coupling
strength, we show how, in the case of nonlinear coupling, the net-
work behavior can switch from a global consensus system to a spa-
tial clustering system. Finally, we show the effect of the network
topology on the scalability properties of the network, and we vali-
date our theoretical findings with simulation results.

Index Terms—Distributed consensus, distributed estimation, dy-
namical systems, sensor networks.

I. INTRODUCTION

SENSOR networks are receiving a significant attention be-
cause of their many potential civilian and military applica-

tions (see, e.g., [1]–[3]). The single major challenge is perhaps
how to conjugate the relative unreliability of the single node, due
to its limited complexity and energy availability, with the high
reliability required to the whole network. Most research works
aim then at making the best use of the available resources. Many
works concentrate on how to adapt the protocol stacks derived
in decades of research in communication networks to the sensor
network scenario. An alternative approach consists, instead, of
recognizing that a sensor network is intrinsically different from
a communication network, thus implying that the design of a
sensor network should reflect its specificities. Among the fea-
tures distinguishing a sensor network from a communication
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network, we may mention its data-centric and event-driven na-
ture. In general, a sensor network can be seen as a sort of dis-
tributed computer that, on the basis of the measurements, let us
say , gathered by sensors, it has to take a deci-
sion about the observed phenomenon by computing a function

of the measurements. Typically, this function
has properties, depending on the application, that, if properly
exploited, can suggest efficient ways to design a sensor net-
work. For example, Giridhar and Kumar recently proved that,
if is invariant to any permutation of the ob-
served variables (like in the computation of the average, for ex-
ample, or the maximum, etc.), it is possible to improve the scal-
ability properties of the network, using some kind of in-network
processing [4]. Interestingly, this symmetry property is not at all
artificial, as it reflects the data-centric nature of the network and
it holds true in a variety of applications. Some works exploit
the data-centric property to devise innovative schemes, like, for
example, the type-based multiple-access (TBMA) system [6].
TBMA is perfectly scalable, but it requires a high coherence of
the channels from the sensors to the sink node.

Quite recently, several authors have proposed an alternative
approach that allows each node to perform in-network pro-
cessing, so as to reduce the burden of the fusion center [1].
Other works go even further by proposing strategies where
the global decision, or estimation, is obtained using a totally
distributed approach, with no need for a fusion center, at least
in the case where the whole network observes a common event
[7]–[12], [19], [46]. A strategy that has received significant
attention in the last few years is the so-called average consensus
protocol. The basic idea is that, if the network is connected, i.e.,
there is a path, possibly composed of multiple hops, between
any pair of nodes, local exchange of information among nearby
sensors is sufficient to reach a global consensus on the average
of the observed values, without requiring any control node.
A global consensus can be reached through linear coupling,
as in [9], [19], and [46] or through nonlinear coupling, as in
[13], [14], and [34]. A global consensus can also be used to
track a common time-varying phenomenon, as in [16] and
[17]. An important synergism to this approach comes also from
the algorithms developed for the coordination of groups of
mobile autonomous agents through local transmissions [21].
An alternative approach to achieve a consensus was proposed
in [22]–[24], where consensus was seen as a result of self-syn-
chronization of a population of pulse-coupled oscillators, each
one initialized with the sensor local estimates or decisions. The
principle ensuring the self-synchronization capability of the
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system proposed in [22] and [23] relied on a theorem, proved
by Mirollo and Strogatz in [27], that required the full network
connectivity, i.e., the property that each node has a direct link
to each other node. This assumption was later removed by Lu-
carelli and Wang in [24], who proved that local coupling among
the nodes is sufficient, provided that the whole network is
connected. The pulse coupling mechanism is indeed appealing
from the implementation point of view, but, especially for large
scale networks, it may suffer from ambiguity problems, as the
information bearing time shift may become indistinguishable
from the propagation delay. The idea of achieving global
estimates or decisions exploiting local coupling among dynam-
ical systems, initialized with local measurements, was then
proposed in [12], [25], and [26]. An average consensus through
mutual coupling of first-order dynamical systems was used in
[12] and [26] to derive the globally optimal maximum-likeli-
hood (ML) estimation: In [12], each system is initialized with
the local measurement, the coupling is linear, and the consensus
amounts to requiring all dynamical systems to reach the same
value of the state; in [26], each system is randomly initialized,
the coupling is nonlinear (it subsumes linear coupling as a
particular case), and the consensus refers to the situation where
the derivatives of the states (rather than the states) converge,
asymptotically, to a common value.

This paper builds on the initial idea of [26] and its main con-
tributions are the following: i) we derive the conditions guaran-
teeing that a globally optimum maximum likelihood estimator
can be obtained through local nonlinear coupling of first order
dynamical systems; ii) we show that nonlinear coupling offers
a variety of behaviors, to be used to find out the best implemen-
tation of the radio transceivers or to allow the network to work
as a global estimator or as a spatial clustering mechanism; iii)
we show that convergence on the state derivative (rater than the
state) improves the resilience against additive noise with respect
to common average consensus techniques.

The paper is organized as follows. In Section II, we describe
the coupling mechanism. In Section III, we show how to de-
sign the coupling mechanism and the local processing in order
to make the equilibrium achievable by each node to coincide
with the globally optimum ML estimate. In Section IV, we de-
rive the conditions guaranteeing that the equilibrium is unique
and asymptotically stable. Finally, in Section V, we report nu-
merical results validating our theoretical findings and showing
the network behavior both as a global estimator or as a spatial
clustering system.

II. COUPLING MECHANISM

The proposed sensor network is composed of nodes, each
composed of four basic components: i) a transducer that senses
the physical parameter of interest (e.g., temperature, concentra-
tion of contaminants, radiation, etc.); ii) a local detector or esti-
mator that processes the measurements taken by the node; iii) a
dynamical system whose state evolves according to a first-order
differential equation, whose parameters depend on the local es-
timate and on the states of nearby nodes; iv) a radio interface
that transmits the state of the dynamical system and receives the
state transmitted by nearby nodes, thus ensuring the interaction
among nearby nodes.

A. Scalar Observations

When each sensor measures a single physical parameter, the
dynamical system present in node evolves according to the
following equation:

(1)
where

is the state function of the th sensor, initialized, at
, as any random number ;

is a function of the observation taken from
node ;
is a nonlinear, odd function that takes into account the
coupling among the sensors;1

is a positive control loop gain measuring the coupling
strength;
is a positive coefficient that quantifies the attitude of the
th sensor to adapt its state as a function of the signals

received from the other nodes;
are the coefficients that take into account the local cou-
pling among the systems: if nodes and are coupled to
each other, , otherwise ; we assume that
the nonzero coefficients are positive and respect the
symmetry condition ;

is additive noise.

The model (1) coincides with the so-called Kuramoto model
[28], when and , , .2 Given the
model (1), the running decision, or estimate, of each sensor is as-
sociated to the derivative of the state function . Global con-
sensus, in this paper, means that all nodes end up evolving with
the same state derivative. This choice is different from common
average consensus techniques, where the consensus refers to the
state value. We will show, in Section V, that this apparently
slight difference brings important consequences in the presence
of additive coupling noise. Furthermore, in our case, the states
of different nodes are let free to converge to functions differing
by a constant term. This extra degree of freedom, with respect
to the techniques converging on the state, might be exploited for
different scopes than synchronization, like, for example, spatial
pattern recognition, as in [30].

A possible schematic implementation of our protocol is re-
ported in Fig. 1. On the right side, there is a transducer that
measures a physical quantity and produces a parameter

. On the left side, there is a single transmit–receive an-
tenna and a circulator used to switch between transmission and
reception. The transmitted signal is a waveform that

1We assume that, without loss of generality, f(x) is normalized so that
f (0) = 1, where f (x) := df(x)=dx, as different values of f (0) can always
be included in K .

2As will be clarified in Section IV, our function f(x) has to be a monoton-
ically increasing function, to guarantee the achievement of the global optimal
ML estimate. Hence, Kuramoto model is mentioned here only for similarity rea-
sons, but our main findings do not include Kuramoto model as a particular case.
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Fig. 1. General coupling mechanism.

depends on the local state . The received signal is a linear
combination of the signals transmitted by nearby nodes, i.e.,

where the coefficients depends on the propagation and radio
interface. The received signal is then mixed with a local wave-
form , generated as a function of , in order to pro-
duce the signal

It is easy to check that the input of the waveform generator co-
incides with (1).

The scheme of Fig. 1 is rather general and it incorporates al-
ternative implementations, like pulse coupled systems, for ex-
ample, or phase-locked loops, depending on the choice of the
waveforms and . The half-duplex feature of the scheme
depicted in Fig. 1 implies that, if two nodes and transmit the
same waveform, i.e., , they do not listen to each
other. This feature is consistent, in mathematical terms, with
the odd property of the function , as will be described in
Section IV.

We assume, initially, that the additive noise is negligible, i.e.,
. In Section V, we will show the effect of noise on the

system performance.
To make explicit the network connectivity properties, it is

useful to rewrite (1) introducing the graph incidence matrix ,
defined as follows. Given an oriented graph 3 composed by
vertices and edges, is the matrix such that
if the edge is incoming to vertex , if the edge
is outcoming from vertex , and 0 otherwise. Given the
vector , composed of all ones, it is easy to check that the in-
cidence matrix satisfies the following property:

(2)

Given , the symmetric matrix defined as
, is called the Laplacian of , and it is independent of the

graph orientation. If we associate a positive number to each

3The orientation of a graph G consists in the assignment of a direction to each
edge.

edge and we build the diagonal matrix , with

, we may introduce the so-called weighted

Laplacian, which is written as . The Lapla-
cian (as well as the weighted Laplacian) has several important
properties, among which are the following [31]: 1) (or
is always positive semidefinite, i.e., with the smallest eigen-
value always equal to zero; 2) the algebraic multiplicity of the
null eigenvalue is equal to the number of connected com-
ponents of the graph; if the graph is connected, and
rank rank , i.e., (or has a unique
zero eigenvalue and the eigenvector associated to the null eigen-
value is the vector . The second smallest eigenvalue
(or ) is known as the graph algebraic connectivity, and
it provides a measure of connectivity [32].

Using the above notation, will denote the
weighted Laplacian associated to the graph describing our net-
work (1), including the positive coefficients . Furthermore,

will denote the maximum degree of the
(weighted) graph.

Using the incidence matrix , we can rewrite (1) in compact
form as

(3)

where ; ;

; is an diagonal matrix,
whose diagonal entries are all the weights , indexed from
1 to ; and the symbol has to be intended as the vector
whose th component is .

B. Vector Observation

When each sensor measures more, let us say , physical pa-
rameters like, e.g., temperature, or pressure, the coupling mech-
anism (1) generalizes according to the following expression4:

(4)
where is the -size vector state of the th node, that is ini-
tialized as a random vector ; is the -size vector, function
of the measurements taken by node ; and is an
nonsingular matrix that depends on the observation model. In
Section III, we show how to choose the vectors and the ma-
trices to guarantee the convergence of (4) to the global op-
timal (ML) estimate. Also in this case, we can rewrite (4) in
compact form using the graph incidence matrix. Introducing the
vectors and , and

the matrix , the system (4) becomes

(5)

4We assume that the coupling coefficients a are the same for all estimated
parameters. This assumption is justified by the fact that a depends on the cov-
erage radius of each transmitter and not on the measurements.
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where denotes the Kronecker product,
, and is an permutation

matrix defined as

if
otherwise

(6)
so that, in (5), each vector , with

, is mapped into a new vector , par-
titioned as , with .

C. Network Self-Synchronization

Differently from [12], where the global consensus was in-
tended to be the situation where all dynamical systems reach the
same state, we adopt an alternative consensus strategy. We de-
fine the network synchronization with respect to the state deriva-
tive, as follows.

Definition 1: The overall population of dynamical systems
(1) [or (4)] is said to synchronize if there exists a solution
of (1) [or (4)] such that all the state derivatives converge, asymp-
totically, to , i.e.,

(7)

where denotes some vector norm. The system is globally
asymptotically stable if the system synchronizes, in the sense
specified before, for any set of initial conditions .

According to Definition 1, if there exists a synchronized state
that is globally asymptotically stable, then it must necessarily
be unique (in the derivative). Interestingly, if the synchronized
state exists, it can be computed in closed form, without explicitly
solving the system of differential equations (1) and (4). In fact,
exploiting the oddness property of , left-multiplying (3) by

the row vector , we obtain

(8)

where in the second equality of (8), we have used (2). Hence,
if system (3) synchronizes (according to Definition 1), the
common value of must be constant and equal to

(9)

Similarly, in the vector case, left-multiplying (5) by the matrix
, we obtain

(10)

where we used the following chain of equalities:

, and the property (2). Hence, if
the system synchronizes, in the sense of Definition 1, the
synchronized state must necessarily be

(11)

III. REACHING GLOBAL ML ESTIMATE THROUGH

SELF-SYNCHRONIZATION

The basic idea of this paper is that, when the whole net-
work observes a common phenomenon, the self-synchroniza-
tion process forms the basic mechanism for reaching the glob-
ally optimal ML estimate through local exchange of the state
functions, without sending the observations to any fusion center.
In particular, let us consider the scalar observation

(12)

where is the common unknown parameter to be estimated and
, are a set of independent and identically dis-

tributed (i.i.d.) Gaussian random variables with zero mean and
variances . Initializing each node with
and setting, in (3), , the network synchronized state
(9) becomes

(13)

This value coincides with the globally optimal ML estimate
[33]. The equilibrium (13) shows that the most reliable nodes
(i.e., the ones with the smallest ) are the most influent nodes
in driving the whole system towards the common decision.
What is important to stress is that this happens without any
node knowing which are the nodes with the best signal-to-noise
ratio (SNR).

In the linear vector case, each node observes the vector

(14)

where is the observation vector, is the un-
known common parameter vector, is the mixing
matrix, and is the observation noise vector, modeled as a
Gaussian vector with zero mean and covariance matrix . We
assume that the noise vectors affecting different sensors are sta-
tistically independent of each other (however, the noise vector
present in each sensor may be colored). We consider the case
where the single sensor must be able, in principle, to recover
the parameter vector from its own observation. This requires
that and that is full column rank. In this case, setting,
in (5), and ,
the synchronized state (11) becomes

(15)

which coincides with the globally optimal ML estimate [33].
It is important to emphasize here that a virtually optimal fu-

sion center in this case would need to know not only the ob-
servation vectors , but also all mixing matrices and the
noise covariance matrices . Conversely, following the pro-
posed approach, if the network converges, each node tends to
the optimal ML estimate without sending all these data to any
sink node, but simply exchanging the state vectors with
nearby nodes. The penalty for having this advantage is that the
solution is reached through an iterative procedure that consumes
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time and energy. However, this energy is spent only for local
transmissions. The crucial point, as far as the global energy con-
sumption is concerned, is then the convergence time. In the next
section, we will give an approximate formula for such a value.

The proposed system has indeed a broader applicability than
just global ML estimation for a linear observation model. From
(9), since is a function of the local observation, our
approach allows us to compute any function of the collected data
expressible in the form

(16)

withpositivecoefficients ,witha totallydistributedmechanism.
Of course, this class of functions is not the most general one. Nev-
ertheless, the class of functions in (16)contains not only the linear
ML case, but it comprises many cases of practical interest (like,
for example, computation of the sufficient statistics in detection
of Gaussian processes in Gaussian noise, computation of max-
imum, minimum, histograms, geometric mean of the observed
values, etc.), as it can be checked by choosing the functions
and and the coefficients appropriately.

IV. GLOBAL ASYMPTOTIC STABILITY OF THE

SYNCHRONIZED STATE

Given the dynamical system (1) or (4), the natural questions
to ask are i) Does the synchronized state exist? and ii) If it exists,
does the system synchronize for any set of initial conditions? In
this section, we provide an answer to these questions. We focus,
initially, on the scalar system (1) and provide necessary and suf-
ficient conditions for the existence of a globally asymptotically
synchronized state, according to Definition 1. Then, we gener-
alize the result to the vector system (4).

Theorem 1: Given the system (1), assume that the following
conditions are satisfied:

a1) the graph associated to the network is connected;
a2) the nonlinear function is a continuously

differentiable, odd, increasing function;
a3) the nonzero coefficients and the coefficients are

positive.
Then, there exist two unique critical values of , denoted

by and , with , such that the syn-
chronized state exists for all , and it does not for all

. Furthermore, if it exists, the synchronized state is
globally asymptotically stable. Lower and upper bounds of
and are given by

and (17)

where

(18)

, with defined in (9);
;5 and and are the maximum

degree and the algebraic connectivity of the graph, respectively.
Proof: See Appendix A.

5The maximum of f(�) is defined on the extended real numbers, i.e., on =
[ f�1;+1g.

Corollary 1: Assume that , in addition to a2), is asymp-
totically convex or concave.6 Then,

1) if is unbounded, ;
2) if is bounded, i.e., , upper and lower bounds

of and are

and (19)

Remark 1: Even though conditions (17) or (19) provide only
a range of values for and , they state an important prop-
erty of the whole system: If we want the network to reach a
global consensus (common estimate), it is sufficient to take
greater than the upper bound in (17) or (19); conversely, if we
do not want the network to reach a global consensus, we need
to take smaller than the lower bound in (17) [or (19)]. In the
simple case of unbounded coupling function, i.e., ,
Corollary 1 proves that the critical coupling value is ,
since .

Remark 2: The nonlinear coupling model (1) includes, as a
particular case, the linear coupling scheme, corresponding to the
choice , as this function respects condition a2). From
(19), we realize that if the function is linear (and then un-
bounded), the critical value of is zero. This means that a lin-
early coupled system always converges to a synchronized state,
for any (positive) value of (Corollary 1). We may then ask
ourselves whether there is any advantage in using a nonlinear as
opposed to a linear, system. Indeed, the possibility to switch the
system behavior from a system always converging to a global
consensus to a system that cannot reach a global consensus, by
acting on a single parameter is a potential advantage that can
be usefully exploited, as will be shown in the next section, to
perform some kind of spatial clustering. This variety of behav-
iors is in fact a unique capability offered by nonlinear, as op-
posed to linear, systems.

Remark 3: As a by-product of the proof of Theorem 1, in the
particular case of , and under the conditions of Theorem
1, the dynamical system (3) approaches the synchronized state
with a rate that is locally proportional to . The conver-
gence rate is indeed a crucial parameter. In fact, from the point
of view of the energy required to reach a common decision, the
proposed system has several advantages with respect to central-
ized systems, as it is totally decentralized, but it has to pay these
advantages with the energy wasted in the iterations necessary to
reach the estimate. Clearly, the higher the convergence rate is,
the lower is this waste of energy. The previous considerations
suggest that, to increase the rate, we can increase or change
the network topology in order to increase , by increasing
the network degree, for example.

Remark 4: The wireless channel is typically affected by
fading. Hence, it is important to analyze the proposed scheme
when the coefficients are random variables. From the con-
ditions required from Theorem 1, we realize that, provided that

6A function f : 7! is said to be asymptotically convex or concave if
9x 2 : sign(f (x)) = sign(f (x)), 8x � x, where sign(x) denotes
the sign of x, and f (x) is the second derivative of f(x) with respect to x.
Observe that the above condition just avoids that f(�) could change its concavity
infinitely often. Thus, it does not represent a strong restriction in the choice of
the function f(�).
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Fig. 2. Evolution of the pulsation _� (t) as a function of time (solid line); optimal centralized ML estimate (dashed lines plus circles): (a) observation noise only
and (b) observation plus coupling noise.

the nonzero fading coefficients are positive (this requirement
has an impact on the kind of detector to be used) and the
network is connected, the system maintains its capability to
achieve a global consensus that is not affected by the values of

. The only impact of the randomness of the coefficients
is on the convergence rate, as depends on them.

The properties established by Theorem 1, for scalar obser-
vation systems, can be generalized to the vector system (5), as
follows.

Theorem 2: Given system (4), assume that conditions of The-
orem 1 are satisfied. Then, there exist two unique critical values
of , denoted by and , with , such that
the synchronized state exists for all , and it does not
for all . Furthermore, if it exists, the synchronized state
is also globally asymptotically stable. Upper and lower bounds
of and are

and (20)

where is defined in (18) and
, with given in (11).

Proof: See Appendix B.
Corollary 2: Assume that , in addition to a2), is asymp-

totically convex or concave. Then,
1) if is unbounded, ;
2) if is bounded, upper and lower bounds of and

are

and (21)

V. PERFORMANCE

In this section, we illustrate some properties of the self-syn-
chronizing network proposed before.

A. ML Estimation in the Presence of Noise

Different sources of noise affect the system: the observation
noise, represented by the vector of random variables in (14),

and the system or coupling noise, represented by the stochastic
process in (1) [or (4)]. These sources of noise affect system
performance in a different way, as we show next.

1) Observation Noise: In Section III, we showed how to
choose the network parameters to guarantee the convergence of
each node to the globally optimum ML estimate. However, in
the case of unbounded noise, the convergence cannot be guar-
anteed with probability one. In fact, once we have chosen a co-
efficient , there is always a non-null probability that ,
event that prevents the possibility of global synchronization. For
any chosen , using the upper bound in (19), the probability of
the nonsynchronization event can be upper bounded as follows:

(22)

In the case of Gaussian observation noise, is a vector of
i.i.d. zero-mean Gaussian random variables and thus
is a random variable, with degrees of freedom. Hence,
denoting with the cumulative distribution function of

, the probability that the network does not syn-
chronize, for a given choice of , is upper bounded as

This probability can be made arbitrarily small by using high
values of .

As an example of vector ML estimation, in Fig. 2(a), we show
the derivatives as a function of time, for a network com-
posed of 16 sensors. The nonlinear coupling function
in this case is bounded and equal to . Each node
has degree 4. The observation model is the linear vector model
(14), with , ; the matrices are composed of
i.i.d. Gaussian random variables of zero mean and unit variance.
The common unknown vector is . The observation
noise is white Gaussian with zero mean and unit variance. The
dashed line and the circles represent the global ML estimates
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Fig. 3. Estimation variance as a function of the number of sensors: (a) f(x) = tanh(x) and (b) f(x) = sin(x).

achievable with an ideal control node that receives the obser-
vations and all mixing matrices with no errors. We can see
that, in spite of the low SNR, all the nodes converge to the ML
estimate, as predicted. To get a global performance assessment,
not conditioned to the specific realizations of the matrices ,
in Fig. 3, we report the variances obtained in the same setting
as in Fig. 2, averaging over 100 independent realizations of the
mixing matrices , the sensor initializations and the noise
values, as a function of the number of sensors . The network is
a regular network, where all nodes have degree 4, for all values
of . Fig. 3(a) refers to the choice , whereas
Fig. 3(b) refers to the choice . The three sets of
marks, in each curve, represent the variances obtained with the
decentralized ML estimator, whereas the solid lines refer to the
centralized ML estimator. The convergence time is fixed to one
second, and it is the same for all . It is interesting to observe
that 1) even though is not monotonic, and thus it does not
satisfy assumption a2) of Theorem 1, the corresponding system
behaves as the system with the monotonically increasing func-
tion ; 2) the decentralized method has practically the
same performance as the centralized one; and 3) even though
the coupling is only local and it does not change with , the
variance decays as , as the optimal ML estimator—this con-
firms the scalability of the proposed approach.

2) Coupling Noise: We focus now on the effect of coupling
noise on the final estimate. Let us start with the effect of cou-
pling noise on the conventional average consensus algorithms
[11], [13], [14], [19], [34]. Without loss of generality, we con-
sider as an example of average consensus algorithm, the dis-
crete-time version of the linearly coupled dynamic system of
[11], [29]7

(23)

where , with denoting the
scalar state of th sensor at step , and is the noise vector at

7This model could also be applied, as the discrete-time counterpart of all the
works considering average consensus through linear coupling. Furthermore, in
the case of nonlinear coupling [13], (23) can be seen as an approximate version,
valid when the states are close to each other and the additive noise is small.

step and is the weight associated by node to the signal
received from node ( if , i.e., if nodes and
are connected). If we premultiply (23) by and divide by ,
we get

(24)

with . This shows that the running
average undergoes a random walk, thus implying that its
variance increases linearly with the time index. This behavior
was already observed in [29], whose authors realized that the
average consensus achieved through (23) does not converge in
any statistical sense (except in the mean). Specifically, in [29],
it was shown that, with average consensus algorithms, as given
by (23), what converges to a constant value is the variance of the
deviations . To recover from this problem,
in [29], it was proposed a very elegant way to minimize the sum
of the variances of , as a solution of a convex optimization
problem, but the running average is still a process with variance
increasing with time.

Letusconsidernowthescalarsystem(1),butsimilar resultscan
be obtained for the vectorial case (4). The study of the stability
of the dynamical system (1), in the case of nonlinear coupling
and in the presence of noise (4), is indeed a difficult problem, and
it goes beyond the scope of the present paper. Nevertheless, if
we limit ourselves to the linear coupling case, i.e., ,
to make a comparison with the average consensus algorithm, as
given in (24), we may still derive some basic properties. In fact, in
the linear coupling case, exploiting the superposition principle,
each dynamical system will converge to a random process having
anaveragevalue, equal to , as given in (9), corresponding to the
solution of (1), with and , plus a fluctuating term
having zero mean and variance , corresponding to the solution
of (1), with and . In other words, the effect of
the coupling noise is to add a noise with constant variance, rather
than of increasing variance, on the final estimate. This happens
simply because the estimate is associated to the derivative of the
state, rather than on the state itself.
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Fig. 4. Intensity of the observed field: (a) observed field and (b) smoothed field.

As a numerical example, in Fig. 2(b), we report a curve refer-
ring to the same settings as in Fig. 2(a), except that now there is
an additive white Gaussian process on each observed com-
ponent, of zero mean and variance . We can see that,
also in this case, the state derivatives of all the nodes converge
to values centered around the globally optimum ML estimates.

B. Effect of Network Topology

From (19), it is evident that the synchronization properties
depend on the graph topology through the graph algebraic con-
nectivity . This means that, for a given and a given
number of nodes, different topologies give rise to different be-
haviors. The easiest case to analyze is that of regular graphs,
where all the node have the same degree.8 The algebraic con-
nectivity of an unweighted regular graph of degree , having a
ring topology where each node is coupled with only its neigh-
bors, is

(25)

where the last approximation is valid for . In the more
general case of a non-necessarily regular graph, the algebraic
connectivity is not known in closed form, but it can be lower
bounded as follows [34]:

(26)

where is the minimum degree and the approximation in (26)
is valid for . Hence, in both cases, for a given or ,
if the network size increases, decreases as . From
(19), this means that to guarantee the self-synchronization,
must increase as .

Conversely, small world or scale-free random graphs exhibit
a different behavior. Small worlds graphs exhibit, in fact, for any
given degree, larger algebraic connectivity than regular graphs.
As far as scale-free graphs are concerned, they are built starting

8The degree of a node is the number of its neighbors, i.e., the number of nodes
linked with that node.

from an initial number of nodes, say , and then adding new
nodes according to an iterated procedure of growth and pref-
erential attachment [36]. Denoting with the mean
value of the second smallest eigenvalue of the Laplacian of a
network composed of nodes, averaged over the graph real-
izations, it was shown in [35] that the limit of for
going to infinity is constant. This proves that, if the network is
built according to a scale-free topology, our strategy respects the
scalability and fault tolerance properties, since, as soon as we
choose larger than the upper bound in (19), for sufficiently
large , we are guaranteed that further addition or removal of
a few nodes do not affect the global synchronization, and then
estimation, capabilities of the network.

C. Synchrony versus Desynchrony

In Section IV, we showed that if the coupling is nonlinear
and is smaller than a critical value, the system does not con-
verge. In this section, we show an example of the system be-
havior when we choose the coupling coefficient in order to
avoid the possibility to achieve global consensus. We consid-
ered a network of 40 40 sensors uniformly spaced over a reg-
ular planar grid. The initial measurements of the overall grid are
reported in Fig. 4(a). Each sensor is initialized with its (noisy)
observation and then it evolves according to (1). Each node is
coupled with its neighbors, and the maximum node degree is 12.
A snapshot of the system state, after 1 s, is reported in Fig. 4(b).
Comparing Fig. 4(a) and (b), we can see that the network is op-
erating a sort of spatial clustering, even though the nodes are
keeping evolving in time. The possibility of segmenting the ob-
served field through a population of coupled dynamical systems
is still an open research topic that we are currently investigating.

VI. CONCLUSION

In this paper, we have shown that, if a sensor network observes
a common event, a network of nonlinearly coupled first-order
dynamical systems can be used to achieve a globally optimum
ML estimate, without the need to send any data to any fusion
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center.Wehaveshownthat theconditionsguaranteeingtheglobal
asymptotic stability of the ML estimate, seen as the self-syn-
chronization state of the whole system, depend on the coupling
strength and on the network topology through the algebraic
connectivity .Withrespecttocommonaverageconsensustech-
niques, based on the convergence of the state, the approach pro-
posed in this paper presents a stronger resilience against additive
coupling noise. In general, the major advantages of the proposed
strategy, as other average consensus or gossip algorithms, are the
simplicityofeach node, thescalabilityof theapproachand theab-
sence of congestion problems. These advantages are paid by the
fact that the solution is achieved through an iterative procedure,
whose convergence rate is proportional to the product . In
general, the total energy spent to achieve the final estimate, within
a certain accuracy, is proportional to the product between the time
necessary to reach the desired estimate (within prescribed error)
and the power transmitted by each node. Since the iterative proce-
dure involves only local exchange of information (provided that
theoverall connectivity isguaranteed), the transmitpowerofeach
node may be low. The time necessary to achieve the estimate is
inversely proportional to . To increase it is nec-
essary to increase the node degree, but this entails an increase of
the transmit power of each node. Hence, we can foresee a sort
of optimal transmit energy, at each node, as a tradeoff between
the contrasting needs mentioned above. This is indeed an inter-
esting research direction that we are currently investigating. For
large-scale networks, it is also important to study the effect of
propagation delays. In [37], we studied this problem and our re-
sults show that the system with linear coupling (i.e., ),
still converges for any given set of bounded delays, but the es-
timate becomes biased by an amount depending on the delays.
Other interesting extensions include the effect of coupling noise
for thegeneralnonlinearlycoupledsystem,theeffectofhavingdi-
rectedgraphs,modelingasystemwithdifferent transmitpoweron
each node, the effect of random coupling coefficients, modeling
channel fadingeffects,andtheimpactof time-varyingtopologies.

APPENDIX A
PROOF OF THEOREM 1

We first introduce the following intermediate results, that will
be used in the proof.

Lemma 1: Given an oriented weighted graph with nodes,
and positive numbers associated to the edges, let

be the (weighted) Laplacian of , where is the
incidence matrix, is the diagonal

matrix whose diagonal entries are the edge-weights . Let
denote the generalized inverse of [38]. If the graph is
connected, then is a continuous function
in .

Proof: Given , consider the eigendecomposition
of

(27)

with eigenvalues arranged in nondecreasing order. The general-
ized inverse of in (27) is given by

(28)

where is the diagonal matrix, containing the last
positive eigenvalues of , and the matrix of the
corresponding eigenvectors. Since the graph is assumed to be
connected, we have , i.e., [31, Lemma 13.1.1]

rank (29)

The generalized inverse in (28) is continuous in if
it is continuous at , for any fixed . Given ,

is continuous at if, for any sequence of positive
vectors that converges to , the corresponding sequence
of generalized inverses converges to .9 Stated in
mathematical terms, we need to prove that

(30)

where denotes the generalized inverse of the weighted
Laplacian associated to the weights-vector . Since

is a continuous function of , (30) is equivalent to the
following:

(31)

We prove now that (31) is satisfied, provided that (29) holds
true (i.e., the graph is connected). To this end, we use the
following necessary and sufficient condition for the continuity
of the generalized (Drazin) inverse [38, Definition 7.2.3].10

Theorem 3 [38, Theorem 10.7.1], [39, Theorem 2]: Let
, with and given by (27). Then,
if and only if

rank rank (32)

If the graph is connected, from (29), it follows that
rank rank , for all , . Thus, given

, for any convergent sequence in
(31), condition (32) is satisfied, and hence .
This proves the continuity of at . Since condition
(31) is satisfied for any , is continuous in all

.
Lemma 2 [40, Theorem 4.14]: Let be a closed, convex

subset of a normed linear space. Then, every compact,11 con-
tinuous map admits at least one fixed point.

The proof of Theorem 1 is organized as follows. We intro-
duce first a proper transformation of the original system (3) so
that the existence and the global asymptotic stability (according
to Definition 1) of the synchronized state (9) can be recasted
in the classical study of existence and the asymptotic stability

9A sequence fA g of matrices in is said to converge to A 2
, if for every real number � > 0, there exists an index j (�) such that if

j � j (�), then kA �Ak < �, where k�k is some matrix norm on . We
denote a convergent sequence fA g toA as fA g ! A. It is worth
observing that fA g ! A if and only if the entries ofA converge to the
corresponding entries of A.

10For the sake of simplicity, we adapt [38, Theorem 10.7.1] to our notation.
Observe that the Drazin inverse, as defined in [38, Definition 7.2.3], corresponds
to the generalized inverse given in (28).

11The map f : C 7! C is called compact if f(C) is contained in a compact
subset of C.
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of the equilibria of the transformed system (see, e.g., [41] and
[42]). Then, using standard fixed-point arguments, we prove
that, under a1)–a3), an equilibrium for the transformed system
exists, provided that , and cannot exist if .
Finally, we show, introducing a valid Lyapunov function, that,
if an equilibrium exists, it is also asymptotically stable.

1. Existence of the Synchronized State

Let us assume that conditions a1)–a3) are satisfied and con-
sider the following change of variables:

(33)

with defined in (9). The original system (3) can be equiva-
lently rewritten as

(34)

(35)

(36)

where , with ,
, and is the weighted Laplacian of the graph,

with diagonal weights-matrix (that depends on ), and
is given by

(37)
where the positivity of comes from a2).12

According to Definition 1, the synchronized state of (3) exists
if and only if the dynamical system in (36) admits an equilib-
rium, or equivalently, if there exists a solution for the following
system of nonlinear equations:

(38)

Given (38), we prove that there exist two critical non-nega-
tive13 values of , denoted by and such that, for all

, the system (38) is feasible and, for all , the
solution of (38) disappears. To this end, it is sufficient to provide
a lower bound of , and an upper bound of
such that, for all , the system (38) admits a solution
and, for all , it does not. Given these and

, there must exist a unique and as defined above
such that .

It is worth observing that, in the case of the linear function
, we have and , .

Hence, the system (38) becomes linear and, since
and , it admits, for any , solutions,

given by span , where is the
generalized inverse of the weighted Laplacian [38]. Thus,
in the case of , we have (by definition) and

(since for the equilibrium points of (36) are not
stable, as shown in Appendix A.2).

12Note, from item 3, right after (1), that lim f(x)=x = _f(0) = 1.
13We focus only on nonnegativeK , since the potential solutions of the system

(38) corresponding to negative values ofK are not stable for (3), as we will show
in Appendix A.2.

Conversely, in the case of nonlinear bounded functions ,
i.e., , is lower bounded by
a positive quantity. This lower bound corresponds to the value
of below which the system (38) is surely infeasible, i.e., [see
(34)]

(39)

where denotes the infinity norm of a vector. A more
stringent condition than (39) is

(40)

where we used the inequality14 , with
. From (40) it follows that, if the

system (38) admits a solution, then it must be

(41)

which provides the lower bound in (17). Observe that, for un-
bounded nonlinear functions (i.e., , the lower
bound (41) disappears.

We consider now a generic (bounded or unbounded) non-
linear function and provide sufficient conditions on for
the system (38) to be feasible. A solution for (38) exists if and
only if the following mapping admits at least one fixed point in

:

(42)

where is the generalized inverse of the weighted Lapla-
cian , given by

(43)

with the diagonal matrix, containing
the last positive eigenvalues of (assumed to be
arranged in nondecreasing order), and the
matrix of the corresponding eigenvectors. To prove the existence
of at least one fixed point for (42), it is sufficient to show that
(42) admits a solution in some compact, convex set of . We
choose this set, without loss of generality (w.l.o.g.), as

, where is any positive number .
Observe that is compact and convex for all and that,
by Lemma 1, the mapping in (42) is continuous
on (because of the positivity of , .
Hence, according to Lemma 2, a fixed point for (42) exists in

, if is a compact map on , for some given
. This is guaranteed if, for any given , is

chosen so that , which corresponds to

and (44)

14The matrix norm induced by the vector infinity norm is the maximum
among the absolute values of the row sums [38, Proposition 10.2.2].
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where is the spectral norm of ,15 and
is the second smallest eigenvalue of . To remove the de-
pendence of on , we consider the more stringent
(sufficient) condition

(45)

where we used the inequality

, with [43, The-
orem 1.16]. In (45), the minimum of on can
be lower bounded as follows. For all , since

, we have [44, Problem 4.3.14]

(46)
where and denote the th eigenvalue of

and , respectively, arranged according to the same
order. From (46), it follows that the lower bound of the min-
imum of on occurs for the minimum of the weights

, defined in (37). Since for any
, we have

(47)

where the last equality follows from the fact that, because of a2),
is even. Using (45) and (47), we obtain the following

bound for :

(48)
For any given , defined in (48) represents

the smallest value of , for which a solution of (42) is guar-
anteed to exist in . Increasing , we enlarge the re-
gion where the solution may fall. Since any in (48),
with , is a valid upper bound for , the lowest upper
bound of is obtained taking the greatest lower bound (i.e.,
the infimum) of the set

(49)

with given by (48). In fact, by the approximation property
of the infimum [43, Theorem 1.14], for every , there
always exists some such that ,
which, by (48), is sufficient to guarantee a solution of (42). Since

in (49) is bounded from below and nonempty, always
exists [43, Axiom 10] and is given by

(50)

where16

(51)

15The matrix norm consistent with the Euclidean vector norm is the spectral
norm [38, Proposition 10.2.4], defined as the largest singular value of the matrix.

16Note that the sup in (51) is defined on the extended real numbers, i.e., on
= [ f�1;+1g.

Since , , expres-
sion (51) can be upper bounded by [43, Theorem 1.16]

(52)

which provides the following lower bound for in (50):

(53)

This complete the proof of (17).
Observe that the lower bound in (53) may be reached or not,

depending on the particular function . Without additional
properties on , we have no guarantee about the achievability.

We prove now that a sufficient condition for to satisfy
(53) with the equality is that be asymptotically convex or
concave. Stated in mathematical terms, a function is asymp-
totically convex or concave if

a4)
(54)

where denotes the sign of , and is the second
derivative of with respect to .

Under a1)–a4), the function is continuous on , and
it is quasi-convex or quasi-concave on , where is de-
fined in (54). In fact, because of a4), is convex (or concave)
on , and thus the set
(or ), with , is convex,
because it is the sublevel set (or the superlevel set) of the convex
(or concave) function ; which corresponds to the def-
inition of quasi-convexity (or quasi-concavity) of on

[45]. Hence, one of the two following statements must
hold for on [45, Sec. 3.4.2]17:

is nondecreasing
(55)

if and only if is quasi-convex on , or

is nonincreasing
(56)

if and only is quasi-concave on . Using (55) and
(56), we obtain the following result for the minimum of
on 18:

• if is quasi-convex on , then [see (55)]

and some (57)

17The class of functions f(x)=x that are nonincreasing (or nondecreasing) on
the whole interval [x;+1] is tacitely treated as special case of (55) and (56),
as shown after (57) and (58).

18We assumed, w.l.o.g., that a � 0, since, if a < 0, conditions (55) and (56)
are satisfied for any x � 0.
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• if is quasi-concave, either (57) or the following
condition hold true [see (56)]

(58)
Observe that, in the case where [satisfying (54)] is

nondecreasing (nonincreasing) on the whole interval ,
condition (57) [condition (58)] still holds true. For a bounded
function , , and thus (only) condition
(58) is satisfied. In the case of unbounded , instead, either
(57) or (58) may be met.

Using (57) and (58), we show that, under a4), defined
in (50) achieves the lower bound in (53). To this end, consider
the following subset of :

(59)

where is given in (48) and is implicitly defined in (57),
if is asymptotically convex, or in (58), if is asymp-
totically concave.19 Given (57) and (58), can be
written as

if (57) holds,

if (58) holds,
(60)

Whether (57) or (58) is satisfied, in (60) is a continuous
and decreasing function on . It follows that

if is unbounded

if is bounded.

(61)
Using (53), (59), and (61), we obtain20

(62)

where the second inequality in (62) comes out from
. From (62), it follows that , which proves the

upper bound in (19).

2. Global Stability of the Synchronized State

Assume now that, in addition to conditions a1)–a3),
so that system (3) may synchronize. We prove that the

synchronized state of the system (3), whose existence is guaran-
teed by , is globally asymptotically stable (according
to Definition 1).

To this end, it is sufficient to consider system (34) and show
that the state of (34) converges to an equilibrium, from any set
of initial conditions. Left-multiplying (34) by and using
(2), we obtain

(63)

19With a slight abuse of notation, we use the same symbol a for both of the
conditions (57) and (58).

20We use a unified expression for inf K , for both bounded and unbounded
functions f(�), with the convention that, if f = +1, then inf K = 0.

In words, the weighted sum is an invariant for
system (34). The invariance of allows the following
decomposition of the state vector in (34):

(64)

with

(65)

Thus, we can study the evolution of system (36) by studying the
dynamics of the following system:

(66)

with satisfying the constraint (65).
We focus now on the equilibria of (65) and show that system

(66) admits a unique equilibrium and that such an equilibrium
is globally asymptotically stable; this proves also the globally
asymptotic stability of the synchronized state of (3).

Since , the condition guarantees the
existence of an equilibrium for system (66) (c.f. Appendix A.1).
Moreover, because of (65), all the equilibria of (66) are iso-
lated.21 In fact, the Jacobian of is given
by , which is positive definite for
all the vectors that are equilibria of (66). Denoting by

one of the (isolated) equilibria of (66),
i.e., satisfying

(67)

by translating the origin to the equilibrium , we can make
to be an equilibrium of (66) and write22

(68)
To make explicit the dependence of (68) on the weighted

Laplacian, we introduce the following function:

(69)

that, because of a2), satisfies the following properties:

,

,
(70)

Using (69) and introducing the diagonal matrix , whose
positive [see (70)] diagonal entries are given by

, indexed from 1 to , and is
defined in (69), system (68) can be equivalently rewritten as

(71)

21An equilibrium point is isolated if it has a surrounding neighborhood con-
taining no other equilibria.

22With a slight abuse of notation, we use the same variables���, to denote also
the system (66), after the shift around ��� .
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where is the weighted Laplacian of the graph, with
diagonal weights-matrix .

The system (71) admits the point as the unique equi-
librium [which also guarantees the uniqueness of for (66)]
and such an equilibrium is globally asymptotically stable, as we
argue next.

From a1) and the properties of the weighed Laplacian of a
connected graph, we have that

span (72)

From (65) and (72), it follows that all the equilibria of
system (71) are given by

span span (73)

where span . Hence, the
unique equilibrium of (71) is the vector .

After having showed the uniqueness of the equilibrium, we
can prove its global asymptotic stability. To this end, consider
the following candidate positive definite23 Lyapunov function:

(74)

The function in (74) is nonincreasing along trajectories
of (71), since

(75)

where the last inequality follows from ,
, , and equality in (75) is reached if and only if

. Since, by definition, must satisfy also the
constraint [see (65)], the function if
and only if (73) holds true, i.e., . Hence, in (74)
is a valid Lyapunov function for (71), and is globally
asymptotically stable for (71) [42, Theorem 5.24]. This guaran-
tees that the state of (34) converges to an equilibrium of
(34) as , for any set of initial conditions.

Observe that, through the whole proof, we have always con-
sidered positive values of . This comes from the fact that all
the potential equilibria of the system (34) [and thus of (71)] cor-
responding to negative are instable. In fact, for negative ,
the valid Lyapunov function , defined in (74), has first
derivative along trajectories of (71) that is positive def-
inite, which proves the instability of the equilibrium
[42, Theorem 5.29].

APPENDIX B
PROOF OF THEOREM 2

Since most of the proof of Theorem follows the same ap-
proach, already described in the Appendix A, in the following,
we point out only the differences.

23A continuous function V : 7! is called a positive definite function
if V (0) = 0, and V (x) � �(jxj), 8x 2 , where � : 7! is some
continuous, strictly increasing scalar function, with �(0) = 0, and �(p) 7! 1
as p 7! 1 [42, Definition 5.13].

1. Existence of the Synchronized State

Given the system (5), we introduce, as for (34), the following
change of variables:

(76)

with defined in (11), and rewrite (5) as

(77)
where , with , and

. To obtain (77), we have used the fol-
lowing chain of equalities: , and

. Given
(77), the synchronized state of (5) exists if and only if the fol-
lowing system of nonlinear equations admits a solution:

(78)

We recast now the study of the existence of a solution for
(78) to the study of the solution of a set of simpler subsystems,
similar to (42). To this end, we introduce the vectors
and , partitioned as , and

, with and

, , where denotes

the th component of the th sensor’s state vector , and
is the th component of the vector . Then, the system
(78) can be equivalently rewritten as

(79)

where is the weighted Laplacian of the
graph, with diagonal weights-matrix , and is still
given by (37), by replacing with . Thus, a solution of (78)
exists if and only if every equation in (79) admits a fixed point in

. But, for any given , (79) is equivalent to (42), if and
are replaced with and , respectively. Hence,

each equation in (79) admits a fixed point provided that
, whereas a solution of (79) cannot exist if . A

lower bound for and an upper bound for are given by

and (80)

with defined in (18).
Since the coupling among the equations in (79) is given only

by the presence of , a fixed point for all the equations exists if
and only if the critical values and in (79) are chosen as
the maximum of and respectively, with
and defined in (80). This proves (20).

The upper bound of and lower bounds of in (21) can
be obtained following the same approach used in Appendix A.1
to prove (19).

2. Global Stability of the Synchronized State

We consider the system (77) and show that, under a1)–a3) and
, the state vector converges to an equilibrium, from any
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set of initial conditions, which proves the globally asymptotic
stability of the synchronized state of (5). Since, similarly to (63)

(81)

is an invariant for system (77), and thus we
can decompose in (77) according to

(82)

where is the matrix of all ones,

, and satisfies
the constraint

(83)

Introducing (82) in (77), we obtain the following dynamic for
:

(84)
where we used the chain of equalities

.
Following the same approach used in Appendix A.2 to obtain

(68), we can translate the system (84) around the isolated equi-
librium given by

(85)
so that the vector is an isolated equilibrium of the following
translated system24:

(86)

We rewrite now the system (86) in a more compact form,
making explicit the dependence on the weighted Laplacian.
To this end, we introduce the vectors and

, partitioned as , and

, with

and , where and denote
the th component of and , respectively. Then, the
system (86) can be equivalently rewritten as

(87)

24We use the same variables to denote the translated system (84) around��� .

where satisfies the constraint (83), and

, with
and is the

diagonal positive matrix, whose diagonal entries are given by

indexed from 1 to , and is the same function as

defined in (69), with and replaced by and ,
respectively.

Using the same technique as in Appendix A.2, one can prove
that the vector is the unique equilibrium of (87) under (83)
and it is globally asymptotically stable. A valid positive definite
Lyapunov function for (87) is

(88)

that can be seen to be nonincreasing along trajectories of (86),
and with zero derivative if and only . This proves
the globally asymptotically stability of the synchronized state
of (5).
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