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ABSTRACT

In this paper we analyze the impact of quantization on the
performance of a discrete-time distributed algorithm aimed at
computing the average of an initial set of values in a wireless
sensor network. We modify a well-known consensus model
and propose a simple scheme where the transmitted data is
quantized due to bandwith and/or power constraints. Con-
versely to existing models that include quantization noise, a
closed-form expression for the residual mean square error of
the state can be derived for the proposed model. This ex-
pression depends on general network parameters and provides
therefore an a priori quantitative measure of the effects of
quantization on the consensus.

1. INTRODUCTION

Wireless sensor networks (WSN) are typically deployed to
sense a physical phenomenon and estimate parameters or de-
tect events. Large deployments are usually built using low
cost nodes of reduced processing capabilities and with con-
straints on bandwidth and power consumption. Although these
nodes are designed to perform simple tasks, they can obtain
results with the accuracy of the whole network only interact-
ing with neighboring nodes. Consensus algorithms aimed at
reaching a common value through local exchange of infor-
mation are well suited for such deployments (see [1] and ref-
erences therein). We focus our attention on the well-known
scheme by Olfati-Saber and Murray in [2] for the estimation
of a parameter, where we assume that the sensors make a mea-
surement and initialize their own state with the sensed value.
Using a linear combination of its own previous value and the
information received from its neighbors, the state is updated
and then broadcasted iteratively. Under given conditions, the
system reaches a consensus equal to the average of the initial
measurements. Although in a digital implementation of this
algorithm the operations are carried out with floating-point
precision, it is more realistic to assume that the transmitted
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information is quantized before it is broadcasted to reduce
bandwidth and/or power consumption.

Some contributions found in literature analyze the effects
of quantization noise on the consensus. For instance, Xiao et
al in [3] study the convergence of the model in [2] when the
received values are assumed corrupted with an additive noise,
and show that the variance of the state vector with respect to
the average of the initial values diverges with time. Using
the results from [3], Yildiz and Scaglione in [4] exploit time
correlation of the data to decrease the variance of the quan-
tization noise when a differential encoder is used. Schizas
et al propose in [5] distributed MLE and BLUE estimators
for the estimation of deterministic signals in ad hoc WSNs,
where the estimators are formulated as the solution of con-
vex minimization subproblems. Kashyap et al introduce in
[6] the concept of quantized consensus and propose an algo-
rithm to reach a consensus in that sense. Aldosari and Moura
in [7] present a model of consensus based on the work of [2],
where each node updates its state using its own value with
floating-point precision and the values of its neighbors with
quantized precision. Aysal et al in [8] present an algorithm
based on [2], where the nodes use a probabilistic quantizer.
The authors show that the system reaches a consensus whose
expected value is equal to the average of the initial values.

In this paper, we consider quantized information exchange
among the nodes and propose a discrete-time algorithm based
also on the model of [2]. The novelty of the proposed scheme
relies on the fact that a closed-form expression for the resid-
ual mean square error (MSE) of the state vector is derived,
allowing for offline computing. The performance of the algo-
rithm is compared with existing models using computer sim-
ulations. The paper is organized as follows. In Section 2 we
give some basic concepts of graph theory. Section 3 presents
the problem statement and describes the consensus algorithm
proposed. The theoretical analysis of the model is included in
Section 4 for the case of uncorrelated quantization noise and
correlated quantization noise. Section 5 presents the simula-
tion results and Section 6 concludes the paper.



2. PRELIMINARIES: GRAPH THEORY

The communication flow among the nodes of a network can
be described by an undirected graph G = (V ,E ) where V =
{1, · · · , N} is the set of vertices (nodes) and E is the set of
edges (links) [9]. The edge eij represents a bidirectional com-
munication link between a pair of distinct nodes i and j. The
set of neighbors of node i is defined as Ni = {j ∈ V : eij ∈
E } for all i, j = {1, · · · , N}, and represents the set of in-
dexes of the nodes sending information to node i. A path in
a graph G is a sequence of alternating nodes and edges that
starts and ends at different nodes, such that each edge is in-
cident to its predecessor and successor node. The graph is
connected if there exists a path between any two nodes. The
connectivity (or topology) of the graph is described by the
N ×N Laplacian matrix L, with entries

[L]ij =

 d
(out)
i i = j
−1 i 6= j & eij ∈ E

0 otherwise
(1)

where d(out)
i stands for the outdegree of node i, and corre-

sponds in our case to Ni. We denote the eigenvalues of L as
λ1 ≤ λ2 ≤ · · · ≤ λN , where by definition of L, λ1 = 0. In
addition, if the graph is connected, from spectral graph theory
results we have that the algebraic multiplicity of λ1 is equal
to one and L is an irreducible matrix [10].

3. PROBLEM STATEMENT

We consider a WSN composed of N nodes, where each node
implements a discrete dynamical system whose state evolves
according to a difference equation. The state of node i at time
instant k ≥ 0 is a single real number denoted xi(k), initial-
ized at xi(0) with the value of the measurement. As proposed
by Olfati-Saber and Murray in [2], the state equation for the
whole system can be expressed in matrix form as follows

x(k) = Wx(k − 1), ∀k ≥ 1 (2)

where
W = I− εL (3)

is a real symmetric N × N matrix called the weight matrix,
L is the Laplacian of the network defined in (1) and ε is a
positive constant belonging to the interval (0, 2

N−1 ] to satisfy
convergence conditions. It has been shown (e.g. in [11]) that
if the matrix W is symmetric and irreducible, as k → ∞
the vector x(k) in (2) tends to 1

N 11Tx(0), where 1 is an
all-ones vector of length N and x(0) ∈ RN×1 is the vec-
tor of initial values. We model the initial set of values as
real valued Gaussian random variables with variance σ2

0 and
uncorrelated among the nodes, such that E [x(0)] = x0 and
E
[
x(0)xT (0)

]
= σ2

0I + x0xT0 , where E[.] is the expected
value operator.

We propose a model based on (2) in which each node has
access to its own data in floating-point precision, but the state
values received from the neighbors are quantized. The state
at node i is updated using the quantized state values received
from its neighbors, while (conversely to model [7]) its own
state value is used both in floating-point precision and quan-
tized as follows

xi(k) = xi(k − 1) +
N∑

j=1,j 6=i

[W]ij
(
xqj(k − 1)− xqi (k − 1)

)
(4)

where W = I − εL as before, xqi (l) = ψq[xi(l)] stands for
the quantized value of the state xi(l), and ψq[·] is the function
implemented by the quantizer. The state equation in (4) for
the whole system can be expressed in matrix form as

x(k) = x(k − 1)− εLxq(k − 1) (5)

where xq(l) is the quantized state vector at time l. The ob-
jective of this paper is to study the impact of the quantization
error on the iterative algorithm in (5), assuming that the un-
derlying graph of the network is undirected and connected
so that the matrices L and W are both symmetric and irre-
ducible. A theoretical approach to evaluate the algorithm in
(5) from an analytical point of view consists in modeling the
quantization error as an additive noise. For the sake of sim-
plicity, we consider a uniform quantizer with b bits and dy-
namic range of [−Xmax, Xmax]. The quantization error can
be then modeled as an additive noise uniformly distributed
within the interval (−∆

2 ,
∆
2 ], with variance σ2

q = ∆2

12 , where
∆ = Xmax

2b−1 is the quantization step. In that case, the quan-
tized state vector xq(k − 1) in (5) is equal to

xq(k − 1) = x(k − 1) + eq(k − 1) (6)

where the error vectors eq(l) ∀l > 0 are assumed zero-mean
and independent of the initial values x(0). Note that this ap-
proach is a linearization of the error which gives more tractable
mathematical operations. Substituting (6) in (5) we obtain

x(k) = Wx(k − 1)− εLeq(k − 1) (7)

Due to the randomness of both the quantization noise and the
initial set of measurements, the convergence of x(k) in (7)
must be studied in probabilistic terms. Therefore, we analyze
the convergence of the state vector in the mean square sense
to a vector xave = α1, where α = 1

N 1Tx0. Specifically, we
analyze the limit of the MSE of the state vector as k → ∞,
i.e.

lim
k→∞

MSE(x(k)) = lim
k→∞

E
[∥∥x(k)− xave

∥∥2

2

]
. (8)

In the following section, we derive closed-form expressions
for the limit in (8) under two different assumptions. First,
we assume that the quantization noise is uncorrelated in time,



which seems to be a reasonable assumption at the beginning
of the iterative algorithm. Afterwards, we consider that the
system reaches a stable value so that the quantization noise is
correlated in time.

4. PERFORMANCE ANALYSIS

A. UNCORRELATED QUANTIZATION NOISE

Proposition 1. Consider the system in (7) with W = I− εL
as defined in (3) symmetric and irreducible, x(0)∼N (x0, σ

2
0I)

and {eq(k);∀k > 0} a set of i.i.d. zero mean uncorrelated
random vectors independent of x(0), with covariance matrix
E[eq(l)eTq (m)] = σ2

qδlmI, where δlm is the Kronecker delta.
Under these assumptions, the limit of the MSE of the state
vector is

lim
k→∞

MSE(x(k)) = σ2
0 + σ2

q

N∑
i=2

1− µi
1 + µi

. (9)

where µi = 1 − ελi and λi is the ith eigenvalue of L, for all
i.

Proof. To compute the limit in (9), we consider the following
expression

MSE(x(k)) = E
[∥∥x(k)− xave

∥∥2

2

]
= var(x(k)) + bias2(x(k)) (10)

where the squared bias is

bias2(x(k)) =
∥∥E[x(k)]− xave]

∥∥2

2
(11)

and the variance is

var(x(k)) = E
[∥∥x(k)− E[x(k)]

∥∥2

2

]
. (12)

The dynamical system in (7) can be rewritten

x(k) = Wkx(0)− ε
k∑
l=1

Wl−1Leq(k − l) (13)

Since eq(k) is zero mean ∀k > 0, the expected value of x(k)
using (13) is equal to

E[x(k)] = Wkx0 (14)

Then, substituting (14) in (11) and computing the limit we
have

lim
k→∞

bias2(x(k)) = lim
k→∞

∥∥Wkx0 − xave
∥∥2

2
= 0

where the second equality holds because Wk tends to 1
N 11T

as k → ∞, since W is symmetric and irreducible. In order
to compute the variance, we substitute (13) and (14) in (12).

Considering E[eq(l)eTq (m)] = σ2
qδlmI, after some basic ma-

trix manipulations we obtain

lim
k→∞

var(x(k)) = σ2
0 + σ2

q lim
k→∞

tr
(
W−2

k∑
l=1

W2lε2L2
)

(15)
where tr(.) stands for the trace function. To compute the trace
in (15) we consider the diagonalization of L = VΛVH and
W = VMVH , where Λ and M are diagonal matrices with
entries equal to the eigenvalues of L and W, respectively,
and V is an Hermitian matrix that diagonalizes both L and
W. Since W = I − εL, the eigenvalues of W are equal to
µi = 1− ελi for all i. The trace in (15) is therefore equal to

tr
(
W−2

k∑
l=1

W2lε2L2
)

= tr
(
M−2Mkε

2Λ2
)

(16)

where we have used the fact that V is Hermitian and Mk is a
diagonal matrix with entries

[Mk]ii =

{
k i = 1
µ2

i−µ
2k+2
i

1−µ2
i

i = 2, .., N.

Substituting for Mk in (16) we have

tr
(
W−2

k∑
l=1

W2lε2L2
)

=
N∑
i=1

µ−2
i [Mk]iiε2λ2

i

=
N∑
i=2

1− µi
1 + µi

(
1− µ2k

i

)
(17)

where in the second equality we have used that λ1 = 0. Since
ε ∈ (0, 2

N−1 ], we have 0 ≤ µi < 1. Substituting (17) in (15)
and replacing for the variance in (10), we have

lim
k→∞

MSE(x(k)) = σ2
0 + σ2

q

N∑
i=2

1− µi
1 + µi

which completes the proof.

Corollary 1. The limit of the MSE of the state averaged over
N nodes is upper bounded by

lim
k→∞

1
N

MSE(x(k)) ≤ 1
N
σ2

0 +
N − 1
N

σ2
q (18)

The result in (18) is straightforward, replacing for µi and con-
sidering 0 ≤ µi < 1 in (9).
Proposition 1 not only shows that the limit of the MSE of x(k)
as k → ∞ exists, but also that this limit can be computed
offline, although it would require knowledge of the eigenval-
ues of W. Additionally, the result from Corollary 1 provides
an upper bound for the limit of the MSE of x(k) that only



depends on general parameters of the network, i.e. the num-
ber of nodes, the variance of the initial measurements and the
variance of the quantization noise.

B. CORRELATED QUANTIZATION NOISE
In this section we analyze the case of correlated quantization
noise where we assume that the quantization error is uncor-
related among nodes but is exactly the same from one time
instant to the next one, once the state is stabilized.

Proposition 2. Consider the system in (7) with W = I− εL
as defined in (3) symmetric and irreducible, x(0)∼N (x0, σ

2
0I)

and {eq(k);∀k > 0} a set of i.i.d. zero mean correlated
random vectors independent of x(0), with covariance matrix
E[eq(l)eTq (m)] = σ2

qI. Under these assumptions, the limit of
the MSE of the state vector is

lim
k→∞

MSE(x(k)) = σ2
0 + (N − 1)σ2

q . (19)

Proof. Following a similar procedure as in Proposition 1, we
have that the bias is 0 and the limit of the variance is

lim
k→∞

var(x(k)) = σ2
0 + σ2

q lim
k→∞

tr
( k∑

l=1

k∑
m=1

Wm−1Wl−1ε2L2
)

(20)

which is slightly different from (15) because now we have
E[eq(l)eTq (m)]=σ2

qI. Using the spectral decomposition of L
and W as in (16), the trace in (20) is equal to

tr
( k∑

l=1

k∑
m=1

Wm+l−2ε2L2
)

= tr
( k∑

l=1

k∑
m=1

Mm+l−2ε2Λ2
)

=

N∑
i=2

ε2λ2
iµ
−2
i

(
µi − µk+1

i

1− µi

)2

(21)

As 0 ≤ µi < 1 for i = 2, . . . N , the term µk+1
i in the expres-

sion above tends to zero as k → ∞. The limit of the trace in
(21) is given by

lim
k→∞

N∑
i=2

ε2λ2
iµ
−2
i

(
µi − µk+1

i

1− µi

)2

=

N∑
i=2

ε2λ2
i

(1− µi)2

= (N − 1).

Then, replacing these results in (20) and substituting for the
variance in (10), the limit of the MSE of x(k) is

lim
k→∞

MSE(x(k)) = σ2
0 + (N − 1)σ2

q

which completes the proof.

Note that assuming a correlated quantization error, the limit
of the MSE of x(k) coincides with the upper bound derived
in (18) if we average over N nodes.

5. SIMULATION RESULTS

In this section we use computer simulations to evaluate the
performance of the model proposed in (5) implementing the
quantizer xq(k) = ψq[x(k)]. For the sake of comparison, two
similar models are additionally simulated (see Table 1). The
floating-point precision model in (2), denoted “No quant” in
the table, is also included as a benchmark. Model 1 assumes
that the updates are carried out in every iteration using only
the quantized states. Model 2 corresponds to the model pro-
posed in [7], and assumes that each node updates its state us-
ing its own previous value with floating-point precision and
the state values of the neighbors in quantized precision (WD

in Table 1 denotes a diagonal matrix whose entries are equal
to the diagonal entries of W). We consider a WSN com-
posed of N = 20 nodes randomly deployed in a rectangu-
lar area of dimensions 100 × 100, where the neighbors for
each node are all the nodes inside a circle of radius a = 35
centered at the former node. The network used in the sim-
ulations is connected with ε = 2

N−1 . The initial measure-
ments are modeled as Gaussian random variables with mean
x0 = x01 and variance σ2

0 = 25, uncorrelated among nodes.
We have observed that the performances of the three mod-
els depend on how close the mean value x0 is to a quantized
value. For this reason, x0 is selected at random within the
range [−15,+15] and different in every realization. We im-
plement a uniform symmetric quantizer operating in the range
of [−20,+20] with b = 3 and b = 6 quantization bits. Fig-
ures 1 and 2 show the evolution of the MSE in equation (8) in
dB as a function of the iterations, averaged over all nodes and
10000 independent realizations for the models in Table 1 with
b = 3 and b = 6 respectively. The simulations show that the
MSE of the state converges for all models and, as expected,
the performance improves with a higher number of bits. The
figures also plot the limits obtained in (9) and (19), along with
the theoretical benchmark of σ2

0/N . As expected, the system
with floating-point precision reaches the theoretical bound of
σ2

0/N asymptotically. Note that for the case of b = 6, the lim-
its obtained in (9) and (19) approach each other, and they both
approach the theoretical benchmark. We observe that the per-
formance of Model 1 is the worst even with a relatively high
number of quantization bits. Comparing the performance of
Model 2 and Model 3, our model attains a smaller MSE in
both cases. From simulations not included here due to lack
of space, we have observed that if the number of quantiza-
tion bits is greater than 6, all models in Table 1 behave quite

No quant x(k) = Wx(k − 1)

Model 1 x(k) = Wxq(k − 1)

Model 2 x(k) = WDx(k − 1) + (W −WD) xq(k − 1),
Model 3 x(k) = x(k − 1)− εLxq(k − 1)

Table 1. Simulated consensus models with xq(k) =
ψq[x(k)].



Fig. 1. MSE of the state in dB averaged over N = 20 nodes
with b = 3 quantization bits.

similar. Moreover, we have simulated networks with up to 50
nodes and, in all cases, the MSE of the state remains between
the limits derived previously.

6. CONCLUSION

A model to achieve the average consensus in a WSN where
the information exchanged among nodes is quantized has been
presented. The simulations show that, when a uniform quan-
tizer is used, the proposed model outperforms similar exist-
ing consensus models that also include quantization. Con-
versely to these models, the limit of the MSE of the state for
the proposed model exists, and under certain assumptions of
the quantization error, a closed-form expression for this limit
is derived. An upper bound for this expression that depends
only on general network parameters is also found. This upper
bound might be useful in the design of the quantizer imple-
mented by the nodes.
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