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T
he goal of this article is to show how a simple self-synchronization mechanism,
borrowed from biological systems, can form the basic tool for achieving globally
optimal distributed decisions in a wireless sensor network with no need for a
fusion center. After describing the basic interaction mechanism among the net-
work nodes, we will illustrate the conditions guaranteeing the convergence of

each node to a global (or local) consensus coinciding with the globally (locally) optimal
decision statistics. The interaction mechanism takes into account the physical channel
parameters, such as fading coefficients and propagation delays. We then illustrate our
results through examples of distributed estimation and multiple hypothesis testing. We also
address energy consumption issues and discuss some possible implementations.

[Sergio Barbarossa and Gesualdo Scutari]
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OVERVIEW
The design of sensor networks faces a number of challenges
resulting from very demanding requirements on one side, such
as high reliability of the decision taken by the network and
robustness to node failure, and very limited resources on the
other side, such as energy, bandwidth, and node complexity. For
this reason, many recent works on sensor networks have con-
centrated on the efficient use of the available resources, mainly
energy, necessary to achieve the users’ requirements [1]. Given
the considerable amount of knowledge accumulated in the
telecommunication networks field, it is not surprising that most
works on sensor networks fall within the conceptual framework
of telecommunication networks, with a special emphasis on
energy-efficient design, node simplicity, and scalability.
However, while the goal of a telecommunication network is to
carry information packets from each source to the relative desti-
nation, irrespective of the packet content, a sensor network is,
fundamentally, an event-driven system: in a sensor network, it is
events that are carried and not packets. If a fire starts, what is
important is that the remote control or actuator node gets this
information as soon as possible, not that all the temperature
measurements taken by the sensors reach the fusion center. 

A critical aspect of a sensor network is its vulnerability to
temporary node sleeping, due to duty-cycling for battery
recharge, permanent failures, or even intentional attacks.
Clearly, the vulnerability increases if there are just a few deci-
sion (sink) nodes, as the failure of a sink node could jeopardize
the whole system. To improve resilience against node failures, it
is necessary to devise decentralized decision strategies that are
able to quickly react to unpredictable topology changes. 

Decentralizing the decisions is also strategic to reducing the
congestion probability. A congestion around a sink node is an
event that is most likely to occur precisely when a hazard situa-
tion occurs, in which case many nodes send their warning packets
to the control nodes at about the same time. This could make the
network less reliable just when the monitoring system is expected
to be as reliable as possible. Decentralizing the decisions is useful
also in this case, as it would prevent the bottleneck situation in
which all the nodes try to access a single sink node.

Of course, the network resilience to node failures increases
as the number of nodes increases. However, this raises the
scalability issue. From an information theoretic point of view,
it was shown in [2] that the transport capacity of a sensor net-
work composed of N nodes sending data to a sink node scales
as 1/N. While intuitive, this result is a somewhat discourag-
ing, as it implies that we cannot do any better than just divid-
ing the resources (e.g., bandwidth) by the number of nodes.
Nevertheless, as shown by Giridhar and Kumar [3], [4] this is
not necessarily the case if the specificity of the sensing prob-
lem is properly taken into account. A sensor network can be in
fact seen as a sort of distributed computer that, on the basis of
the data collected by N sensors, let us say y1, y2, . . . , yN , has
to compute a function f(y1, y2, . . . , yN). This function may
be, for example, a sufficient statistic of the data. From this per-
spective, a sensor network could be designed using the power-

ful tools of parallel and distributed optimization [5], [6].
Moreover, the objective function f(y1, y2, ldots, yN) may have
properties that can be exploited to improve scalability. In many
applications, for example, f(y1, y2, . . . , yN) is a symmetric
function of the measurements; i.e., it is invariant to any per-
mutation of the observed variables. In such a case, it was
shown in [4] that the transport capacity scales as 1/ log N, as
opposed to 1/N. Interestingly, this permutation invariance
assumption is not at all artificial, as, conversely, it reflects the
data-centric nature of some sensor networks, where what is
important is the whole set of measurements and not the
knowledge of which node has taken which measurement.
Examples of networks designed according to the data-centric
perspective include the type-based multiple access, where the
identification of the data type at the sensor decides what
orthogonal channel the sensor is going to use over a multiple
access channel [7]. A sensor network can be seen indeed as a
multiterminal inference machine, where multiple nodes send
their information to a control node, subject to a rate con-
straint imposed by the communication channel [1]. This
induces an interplay between signal processing and network-
ing that should be properly taken into account [1]. 

Besides deriving scaling laws pertinent to sensor networks,
Giridhar and Kumar [4] showed also that better scalability laws
can be achieved by endowing the network with in-network pro-
cessing capabilities and structuring the network in a hierarchi-
cal structure, with different roles assigned to different nodes. 

Following [4], we share the view that the network should be
organized in hierarchical levels, where the lower level nodes,
simple but vulnerable, cooperate to achieve local consensus with
a reliability greater than the single node, whereas intermediate
nodes are responsible for conveying the local consensus
achieved by the lower level nodes to the control centers. In this
article, we concentrate on the lower level nodes and our goal is
to illustrate a strategy of interaction among the nodes that
allows them to reach globally optimal decisions with a totally
decentralized approach, exploiting a consensus mechanism
based on the self-synchronization of first-order coupled dynami-
cal systems. The basic idea is borrowed from biological systems
where self-synchronization occurs in a variety of circumstances,
from the heart beating to neuron cell firing, and forms the basis
of their robustness and reliability. Our goal is to bring the math-
ematical models describing self-synchronization into a signal
processing perspective to derive a novel approach to distributed
hypothesis testing or estimation. 

Distributed consensus algorithms are indeed techniques
largely studied in distributed computing (see, e.g., [6]) and their
application to statistical consensus theory has a long history
(see, e.g., [8]). Average consensus techniques have received
great attention in recent years (see, e.g., [9]–[13] and references
therein). In particular, the conditions for achieving a consensus
over a common specified value, like a linear combination of the
observations, was solved for networked dynamic systems by
Olfati-Saber and Murray, under a variety of network topologies,
also allowing for topology variations during the time necessary



to achieve consensus [9], [10], [13]. Belief propagation is another
powerful distributed technique capable of achieving globally
optimal decisions in a totally decentralized way (see, e.g.,
[14]–[16] and the references therein). A special form of consen-
sus, known as the alignment problem, where all network agents
eventually reach an agreement, but without specifying the final
value, was also thoroughly studied by Jadbabaie et al. in [17]. A
recent excellent tutorial on distributed consensus techniques is
given in [13].

MOTIVATING EXAMPLES
In this section we will illustrate some basic statistical signal pro-
cessing problems, whose centralized solution is well known. The
goal of the ensuing sections will be to show how to solve them
in a totally decentralized way. 

PROBLEM 1: ESTIMATION OF A COMMON 
SET OF PARAMETERS
Let us consider a network composed of N sensors, whose goal is
to estimate a set of L parameters, given by vector ξ . We assume
that each sensor collects a vector yi of M measurements, related
to the unknown vector ξ through the linear observation model

yi = Ai ξ + vi ; (1)

where vi is additive noise, with zero mean and covariance matrix
Ri. The noises on different sensors are statistically independent
of each other but each vector vi may be colored. If the noise
probability density function (pdf) is Gaussian, the globally opti-
mal maximum likelihood (ML) estimator is [18]

ξ̂ =
(

N∑
i =1

AT
i R−1

i Ai

)−1 (
N∑

i =1

AT
i R−1

i yi

)
. (2)

If the noise pdf is unknown, (2) still represents a meaningful
estimator, as it is the best linear unbiased estimator (BLUE)
[18]. If this estimation is to be taken by a fusion center, every
sensor is required to transmit to the fusion center not only its
measurement vector yi but also its own mixing matrix Ai and
noise covariance matrix Ri. 

PROBLEM 2: MULTIPLE HYPOTHESIS TESTING
Let us consider now the case where the goal of the network is to
distinguish between M alternative hypotheses, with M ≥ 2, in
general. The M hypotheses may be spatial patterns, for example.
We suppose that each hypothesis Hk occurs with a known a priori
probability Pk and we denote by pi(yi/Hk) the conditional pdf
related to the observation of vector yi, conditioned to the hypoth-
esis Hk. We also assume that the measurements taken by differ-
ent sensors are conditionally independent from each other so
that, if we group the vector of measurements yi into a vector
y = (y1, y2, . . . , yN)T , we have p(y/Hk) = �N

i =1 pi(yi/Hk) . If
the decision criterion consists of minimizing the error probabili-
ty, the optimal decision test is the one that chooses the hypothesis
Ĥm that maximizes the a posteriori probability P(Hk/y), or [18] 

Ĥm = arg max
k

{p(y/Hk)P(Hk)}

= arg max
k

{
N
�

i =1
pi(yi/Hk)P(Hk)

}
. (3)

Hence, the fusion center needs to know every single pdf
pi(yi/Hk) to take a decision.

DECENTRALIZED DECISION THROUGH 
SELF-SYNCHRONIZATION
In this section we will briefly review the self-synchronization
concept, as observed in nature, and then we will show how to
use a self-synchronization mechanism to force every single
node of the network to reach the globally optimal decision tests
specified in the previous section, without the need of any a
fusion center. 

A BRIEF HISTORY OF THE SELF-SYNCHRONIZATION IDEA
Self-synchronization is a phenomenon first observed between
pendulum clocks (hooked to the same wooden beam) by
Christian Huygens in 1658 [19]. Since then, self-synchroniza-
tion has been observed in a myriad of natural phenomena,
from flashing fireflies in South East Asia to singing crickets,
from cardiac pacemaker or neuron cells to menstrual cycles of
women living in strict contact with each other [19]. Readers
interested in the self-synchronization phenomena as observed
in nature should refer to [19] for an in-depth treatment of this
fascinating and pervasive subject. A simple example may be
useful to illustrate how some basic biological mechanisms
could be exploited to devise robust sensor networks with built-
in consensus capabilities. In the so-called pacemaker cells
present in the human heart, a chemical reaction takes place
that generates positive ions. This reaction induces an electrical
potential difference, between the interior and exterior of the
cell, that increases with time. Above a certain potential differ-
ence, however, the cell membrane becomes transparent so that
the internal ions are fired to the exterior, thus periodically
resetting the potential to zero. This behavior makes the single
cell work as a pulse oscillator. At the same time, the cell mem-
brane lets outer ions, fired by neighbor cells, enter into the
cell. This induces an interaction about the firing times so that,
from the outside, the overall population of pacemaker cells can
be seen as a set of pulse-coupled oscillators. The situation is
actually more complicated, as this population is also affected
by pulsed commands arriving from the brain, which reacts to
external and internal stimuli to insure the proper functioning
of the whole body. From an engineering point of view, the
main question is whether this system is sufficiently stable to
guarantee a proper functioning, in spite of the simplicity and
potential unreliability of the single cell. Interestingly, Mirollo
and Strogatz provided a rigorous answer to this question prov-
ing that, under mild assumptions on the coupling function, if
the network of nodes is fully connected, there exists only one
stable equilibrium represented by the situation where all cells
fire at the same time [20]. Hence, the interaction among the
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cells is what insures the desired robustness. Actually, full con-
nectivity is not even necessary, as what is really needed is only
global connectivity (i.e., the presence of a path between every
pair of cells). The previous mechanism is very robust, as it can
tolerate the death of many cells without any permanent impact
on the cell firing rate, provided that the number of dead cells
does not affect the network connectivity. Hoppensteadt and
Izhikevich went even further, proving that two pulse-coupled
oscillators really interact with each only if their rates are in a
resonant ratio. This led them to conjecture that simultaneous
exchanges of information can take place in the human brain
using a sort of frequency multiplexing: Classes of neurons
tuned on the same (or resonant) firing rate interact with each
other, but they do not interact with other classes of neurons
firing at nonresonant rates [21]. 

The previous mechanism is just an example of an algo-
rithm inspired by biological systems that could have an
impact in the design of robust, self-organizing, systems. For
example, Izhikevich proposed the use of a pulse-coupled oscil-
lator as an associative memory [22]. As an example related to
sensor networks, Hong et al. proposed the use of pulse-cou-
pled oscillators to achieve a detection consensus in a fully
connected sensor network [23], building on the results of
Mirollo and Strogatz [20]. Later, Lucarelli et al. [24] proved
that full connectivity is not necessary, as what is strictly
required is global connectivity (i.e., the existence of a path
between each pair of nodes, possibly composed of several
hops). The approach suggested in [23], [24] is a form of con-
sensus achieved through self-synchronization, but the final
consensus value is a priori unpredictable. Also, timing syn-
chronization, as proposed in [23], [24], may be critical in
wide-area networks, where propagation delays might induce
an ambiguity problem. In general, self-synchronization may
be extended to include the situation where a consensus is
achieved over a physical parameter of interest, not necessarily
the initial time of phase. In this broader sense, self-synchro-
nization was proposed as the way to achieve globally optimal
estimation or detection [25]–[29]. In the next sections we will
concentrate on these approaches. 

OPTIMAL DISTRIBUTED DECISION THROUGH 
SELF-SYNCHRONIZATION 
The idea of sensor networks proposed in [25]–[29] is the fol-
lowing. The network is composed of N nodes, each equipped
with four basic components: 1) a transducer that senses the
physical parameter of interest yi (e.g., temperature, concen-
tration of contaminants, radiation, etc.); 2) a local processing
unit that provides a function gi(yi) of the measurement; 3) a
dynamical system, initialized with the local measurements,
whose state xi(t) evolves as a function of its own measure-
ment gi(yi) and of the state of nearby sensors; 4) a radio
interface that makes possible the interaction among the sen-
sors. In the scalar observation case, the state of the dynamical
system present at node i evolves according to the following
differential equation [25]–[29]: 

ẋi(t) = gi (yi) + K
ci

N∑
j=1

aij h[xj (t − τi j) − xi(t)] + wi(t),

i = 1, 2, . . . , N, (4)

where h(x) is a scalar coupling function, typically dependent
on the radio interface (if h(x) = sin(x), (4) coincides with
Kuramoto’s model [30]), K is a global control loop gain, ci is a
local positive coefficient whose choice determines the final
consensus form, the coefficients aij account for the coupling
among the nodes, τi j is the propagation delay from node j to
node i, and wi (t) is coupling noise. The only assumption we
make on the coefficients aij is that they are non-negative. They
may depend, for example, on the channel parameters accord-
ing to the law aij =

√
pj|hij|2/d 2

i j , where pj is the power trans-
mitted by node j, hij is the fading coefficient of the channel
between nodes i and j, and dij is the distance between nodes i
and j. In general, the coefficients aij are not symmetric, to
accommodate, as an example, for different transmit powers.
The evolution of the state equation (4), for example, for t > 0,
requires the specification of the states xi(t),∀i, for a time
interval [−τmax, 0], where τmax is the maximum propagation
delay [for unretarded systems, it is only necessary to specify
xi(0)]. In the vector case, each node observes a vector yi and
the state equation becomes  

ẋi(t) = gi(yi) + K C−1
i

N∑
j=1

aij h[x j (t − τi j) − xi(t)] + wi(t),

i = 1, 2, . . . , N, (5)

where Ci is a positive definite matrix. The important question
now is how to choose the free parameters of (4) or (5) and to
determine the conditions guaranteeing that each node is able to
reach the globally optimal decision statistic. But, before proceed-
ing it is necessary to clarify what we mean by consensus. We say
that the system (4) synchronizes if all the state derivatives ẋi (t)
converge asymptotically toward a common value ω∗, for any set
of initial conditions. A global consensus is achieved when the
whole system synchronizes in the sense specified above.

This definition is different from the commonly used defini-
tion in which what is required is convergence on the state (see,
e.g., [12]), rather than on its derivative. The main motivation
underlying our choice is the better resilience against coupling
noise. In fact, in the presence of coupling noise [wi (t) in (4)],
the states xi (t), at least in the simple linear coupling case, are
affected by a random walk process whose variance increases lin-
early with time. This makes the final consensus a strong func-
tion of the coupling noise. In our case, instead, the state
derivative is affected by a noise that is the derivative of a random
walk and then it has a constant variance. Furthermore, as
shown in [28], system (4) is able to converge, for any set of
(bounded) propagation delays, to a prescribed function of the
observations. Conversely, classical consensus techniques [10],
[13], studied under a homogeneous delay assumption (i.e.,



τi j = τ ), converge if the (undirected) graph is connected, and if
and only if the delay is less than a topology-dependent value.

It is now useful to recall some basic properties of directed
graphs, as they represent the basic analytical tool for studying
the interaction among the nodes.

DIRECTED GRAPHS: THE BASIC MATHEMATICAL TOOL 
TO DESCRIBE INTERACTIONS
A weighted directed graph (or digraph, for short) G = {V, E} is
defined as a set of nodes (or vertices) V and a set of edges E
(i.e., ordered pairs of nodes), with the convention that
eij � (vi, vj) ∈ E (i.e., vi and vj are the head and the tail of the
edge eij, respectively) means that the information flows from
vj to vi. A digraph is weighted if a positive weight aij is associ-
ated to each edge. In our case, there are no loops, so that
aii = 0. If (vi, vj) ∈ E ⇔ (vj, vi) ∈ E , then the graph is said to
be undirected. For any node vi,Ni is the set of neighbors of
node vi (i.e., the set of nodes sending data to node vi). A
strong path in a digraph G is a sequence of distinct nodes
v1, v2, . . . , vq ∈ V such that (vi−1, vi) ∈ E, for i = 2, . . . , q. If
v1 ≡ vq , the path is said to be closed. A weak path is a
sequence of distinct nodes v1, v2, . . . , vq ∈ V such that either
(vi−1, vi) ∈ E or (vi, vi−1) ∈ E , for i = 2, . . . , q. A strong cycle
(or circuit) is a closed strong path. A digraph with N nodes is a
directed tree if it has N − 1 edges and there exists a distin-
guished node, called the root node, which can reach all the
other nodes through a (unique) strong path. Hence, a directed
tree cannot have cycles and every node, except the root, has
one and only one incoming edge. A digraph is a (directed) for-
est if it consists of one or more directed trees. A subgraph
Gs = {Vs, Es} of a digraph G , with Vs ⊆ V and Es ⊆ E , is a
directed spanning tree (or a spanning forest) if it is a directed
tree (or a directed forest) and it has the  same node set as G;
i.e., Vs ≡ V . We say that a digraph G contains a spanning tree
(or a spanning forest) if there exists a subgraph of G that is a
directed spanning tree (or a spanning forest).

In a digraph there are many degrees of connectedness: 1) a
digraph is strongly connected (SC) if any ordered pair of dis-
tinct nodes can be joined by a  strong path; 2) a digraph is
quasi strongly connected (QSC) if, for every ordered pair of
nodes vi and vj, there exists a node r that can reach either vi

or vj via a strong path; 3) a digraph is weakly connected (WC)
if any ordered pair of distinct nodes can be joined by a weak
path; 4) a digraph is disconnected if it is not weakly connect-
ed. According to the above definitions, it is straightforward to
see that strong connectivity implies quasi strong connectivity
and that quasi strong connectivity implies weak connectivity,
but the converse, in general, does not hold. For undirected
graphs, instead, the above notions of connectivity are equiva-
lent: An undirected graph is connected if any two distinct
nodes can be joined by a path. Moreover, it is easy to check
that the quasi strong connectivity of a digraph is equivalent to
the existence of a directed spanning tree in the graph. When a
digraph G is WC, it may still contain strongly connected sub-
graphs. A maximal subgraph of G, which is also SC, is called a

strongly connected component (SCC) of G [31]. Since a node
is SC, it follows that every node lies in an SCC. Using this
concept, any digraph G can be partitioned into SCCs, let us
say G1 = {V1, E1}, . . . ,GK = {VK, EK} ,  where Vk ⊆ V and
Ek ⊆ E, k = 1, . . . , K , denote the set of nodes and edges lying
in the k th SCC, respectively. 

The connectivity properties of a digraph may be better
understood by referring to its corresponding condensation
digraph. We may reduce the original digraph G to the conden-
sation digraph G∗ = {V∗, E∗} by associating the node set Vk of
each SCC Gk of G to a single distinct node v∗

k ∈ V∗
k of G∗ and

introducing an edge in G∗ from v∗
i to v∗

j if and only if there
exists some edges from the SCC Gi and the SCC G j of the origi-
nal graph [31, Ch. 3.2]. An SCC that is reduced to the root of a
directed spanning tree of the condensation digraph is called
root SCC (RSCC). Looking at the condensation graph, we may
single out the following topologies of the original graph: 1) G
is SC if and only if G∗ is composed by a single node; 2) G is
QSC if and only if G∗ contains a directed spanning tree; 3) if G
is WC, then G∗ contains either a spanning tree or a (weakly)
connected forest.

Some examples of graph topologies are shown in the top row
of Figure 1, where we report three topologies (top row), namely:
(a) an SC digraph, (b) a QSC digraph with three SCCs, and (c) a
WC (not QSC) digraph with a two-tree forest. For each digraph,
we also sketch its decomposition into SCCs and RSCCs. 

We recall now the basic properties of the matrices associ-
ated to a digraph, as they play a fundamental role in the sta-
bility analysis of the system illustrated in this article. Given a
digraph G , we introduce the following matrices associated
with G : 1) The N × N adjacency matrix A, which is com-
posed of entries aij equal to the weight associated to the edge
eij, if eij ∈ E , or equal to zero, otherwise; 2) the degree
matrix D, which is a diagonal matrix with diagonal entries
Dii = ∑N

j=1 aij ; 3) the weighted Laplacian L, defined as
L = D − A.

If we denote by 1 and 0 the vectors of all ones or zeros,
respectively, it is straightforward to verify that L 1 = 0; i.e.,
zero is an eigenvalue of L corresponding to the right eigen-
vector 1. The multiplicity of the zero eigenvalue of L is equal
to the minimum number of directed trees contained in a
directed spanning forest of G. Moreover, the zero eigenvalue
of L is simple if and only if G contains a spanning directed
tree or, equivalently, G is QSC.

FORMS OF CONSENSUS
We can now illustrate the achievable forms of consensus. We
will consider the linear coupling case first, with or without
propagation delays, and then we will consider the nonlinear
coupling case, with no delays.

Linear Coupling
In the linear coupling case, i.e., when h(x ) = x, system (4) has
been proved to synchronize if and only if the digraph is QSC and
the consensus value is [28]
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[FIG1] Examples of graphs: (a) Strongly connected graph. (b) Quasi strongly connected graph with one root strongly connected
component and two strongly connected components. (c) WC graph containing a two-tree forest (top row) and evolution of the state
derivatives of (4) (bottom row).
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lim
t→∞

ẋq(t) = ω∗

=
∑N

i =1 γi ci gi(yi)∑N
i =1 γi ci + K

∑N
i =1

∑N
j=1 γiaijτi j

, ∀q,(6)

where γi are the entries of the left eingenvector associated to
the null eigenvalue of the graph Laplacian. The coefficient γi is
positive if and only if node i can reach every other node through
a strong path, otherwise γi = 0. This means that the only nodes
that have an impact on the final consensus are those that can
reach every other node in the network, even if this occurs
through several hops. As an extreme case, the final consensus
coincides with the decision taken by a single node, let us say
node r, if the graph contains only one directed tree whose root
node is node i.  More generally, if the graph is not even QSC but
it contains a forest with K strongly connected root components,
the system evolution gives rise to K clusters, where the nodes
belonging to each cluster achieve a local (within the cluster)
consensus [28]

lim
t→∞

ẋq(t) = ω∗
q =

∑
i ∈Ni

γi ci gi(yi)∑
i ∈Ni

γi ci + K
∑

i ∈Ni

∑N
j=1 γiaijτi j

,

∀q ∈ Ck, k = 1, . . . , K, (7)

where Ck indicates the k th cluster. Hence, the same mechanism
leading to a global consensus, as in (6), is also able to produce
clusters, as in (7), depending on the network connectivity prop-
erties. In practice, we may force one behavior or the other, act-
ing on the transmit powers pj; i.e., on the coefficients aij, as
they ultimately determine the graph topology.

The consensus forms described before are appealing because
they can be achieved under very broad conditions. However,
they present also a drawback due to their dependence on the
network topology, through the weights γi, and the channel sta-
tus, through the coefficients aij and the delays τi j. It was proved
in [28] that the dependence of the final consensus on the
topology disappears (in the sense that γi = 1) if and only if the
graph is balanced; i.e., 

∑N
j=1 aij = ∑N

j=1 aji,∀i.
Note that for undirected strongly connected graphs, this

condition is always true. Then, a topology-independent consen-
sus is achievable by changing the channel coefficients in order
to get a balanced graph. Recalling, from (4), that
aij =

√
pj |hij |2/d 2

i j , in time division duplexing systems, where
hij = hji, a balanced graph is obtained by using the same trans-
mit power on each node, so that pj = p,∀ j, and thus
aij = aji,∀ i and j.

Even if we are able to get rid of the topology dependence,
the final consensus values, as given in (6) or (7), still depend
on the channel parameters. Actually, this is true only in the
delayed case, because for τi j = 0 the channel dependence dis-
appears. But in the delayed case, this dependence prevents
expressions (6) or (7) from becoming optimal decision statis-
tics, as these should depend only on the gathered data.
Nevertheless, also in the delayed case, we can easily eliminate

the channel-dependent term, in the denominator of both (6) or
(7), using the following two-step procedure. We run the evolu-
tion equation first with the right functions gi(yi), thus obtain-
ing the consensus value ω∗(y). Then, we run the algorithm
again, this time setting gi(yi) = 1, thus obtaining a second
consensus, let us say ω∗(1). It is easy to verify, from (6) or (7),
that the ratio ω∗(y)/ω∗(1) assumes a value independent of the
channel coefficients. If we also insure that the graph is bal-
anced, the previous procedure allows each node to reach,
asymptotically through its state derivative, any form of con-
sensus that can be expressed in the form [28]

f(y1, y2, . . . , yN) = u


(

N∑
i =1

ci

)−1 N∑
i =1

ci gi(yi)


 , (8)

where u (·) is a function that each node can apply to the ratio
achieved through (6) or (7).

Similarly, in the vector case (5), the final consensus, in the
absence of delays, assumes the form [28]

f(y1, y2, . . . , yN) = u


(

N∑
i =1

Ci

)−1 N∑
i =1

Cigi(yi)


 . (9)

The forms of consensus, (8) or (9), although apparently very spe-
cific, incorporate several cases of practical interest in statistical
signal processing. For example, the vector form (9) may be used
to solve Problem 1 as formulated in the Motivating Examples
section above; i.e., to achieve the globally optimal ML estimate,
given by (2), simply by running (5), after setting Ci = AT

i R−1
i Ai

and gi(yi) � (AT
i R−1

i Ai)
−1 AT

i R−1
i yi .

Similarly, we may also solve Problem 2, using (8). The
MAP test may in fact be constructed by evolving (4) with
ci = 1 and gi(yi/Hk) = log(pi(yi/Hk)P(Hk)) for K times
(i.e., as many time as the number of hypotheses). At conver-
gence, each node applies the function u(ω∗

k) = exp(ω∗
k) to the

consensus achieved under hypothesis k. It is easy to verify
that each final value u(ω∗

k) is proportional to the argument of
the MAP detector in (3).

Nonlinear Coupling Case
The nonlinear coupling case is of course more difficult to analyze
mathematically. Nevertheless, in [27], it was shown that, in the
case of undirected graphs, if the coupling function h(·) in (4) or
(5) is an odd, monotonically increasing function, then the net-
work achieves a global consensus, still in the form of (8) or (9), if
the global coupling coefficient K is greater than a critical value.
This value was upper-bounded by the following expression [27]: 

KU = 2‖Dc�ω‖2

hmax λ2(LA)
,

where Dc = diag (c1, . . . , cN) , �ω = [g1(y1), g2(y2), . . . ,

gN(yN)]T − ω∗1, hmax is the maximum of h(x); λ2(LA) is the
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so called algebraic connectivity of the graph; i.e., the second
smallest eigenvalue of the graph Laplacian LA. The same condi-
tion applies to the vector observation case. Hence, at least in the
absence of delays and for symmetric links, a global consensus
toward the optimal decision statistics is still achievable, pro-
vided that the nonlinear coupling function is an antisymmetric
increasing function and that the coupling is sufficiently strong.
Interestingly, the nonlinear case has a greater variety of behav-
iors than the linear case as the network may be designed to
avoid the convergence toward a unique common value simply
choosing K smaller than a critical value [27]. This property
might be used, for example, to achieve some forms of clustering.

NUMERICAL EXAMPLES
We now present some numerical examples to validate the theo-
retical findings described in the previous sections.

EXAMPLE 1
In the bottom row of Figure 1, we plot the dynamical evolutions
of the state derivatives of (7) versus time for the three network
topologies sketched in the top row. Each curve shows also the
theoretical asymptotic values of (6) or (7) (dashed line with
arrows). As predicted by the theory, the dynamical system of
Figure 1(a) achieves a global consensus, since the underlying
digraph is SC. The network of Figure 1(b), instead, is not SC,
but it is QSC and the system is still able to globally synchronize,
since there is a set of nodes in the RSCC component able to
reach all the other nodes. However, the final consensus in such
a case contains only the contributions from the nodes in the
RSCC, since no other node belongs to the root of a spanning-
directed tree of the condensation digraph. Finally, the system of
Figure 1(c) cannot reach a global consensus since there is no
node that can reach all the others, but it does admit two disjoint
clusters, corresponding to the two RSCCs; namely, RSCC1 and
RSCC2. The middle lines of Figure 1(c) refer to the nodes of the
SCC component that do not belong to either RSCC1 or RSCC2.
These nodes are affected by the consensus achieved by the two
RSCC components, but they cannot affect them. Observe that,
in all the cases, the state derivatives of the (global or local) clus-
ters converge to the values predicted by the closed-form expres-
sion given in (6) or (7), depending on the network topology and
the channel parameters.

EXAMPLE 2
The behaviors shown in the previous example refer to a given
realization of the topology, with given link coefficients and
observations. In this example, we report the performance
obtained in the estimation of a scalar variable, averaged over
100 independent realizations of network topology, channel
coefficients, and noise terms. Each sensor observes a variable
yi = Ai ξ + vi , where vi is additive zero mean Gaussian noise,
with variance σ 2

i . The goal is to estimate ξ . The estimate is
performed through the interaction system (4), setting
gi(yi) = yi/Ai and ci = A2

i /σ
2
i , in order to achieve the global-

ly optimal ML estimate. The network is composed of 40

nodes, randomly spaced over a square of size D. The analog
system (4) is implemented in discrete time, with sampling
time Ts = 10−3 s. The size of the square occupied by the net-
work is chosen in order to have a maximum delay
τmax = 100 Ts. To simulate a practical scenario, the channel
coefficients aij are generated as independent and identically
distributed Rayleigh random variables, to accommodate for
channel fading. Each variable aij has a variance depending on
the distance dij between nodes i and j,  equal to
σ 2

i j = pj/(1 + d 2
i j). We set the threshold on the amplitude of

the minimum useful signal to zero, so that, at least in princi-
ple, each node hears each other node. The corresponding
graph is then SC.  Figure 2 shows the estimated average of
the state derivative (plus and minus the estimation standard
deviation), as a function of the iteration time. The results
refer to following cases of interest: 1) ML estimate achieved
with a centralized system, with no communication errors
between nodes and fusion center (parallel dotted lines); 2)
estimate achieved with the proposed method, with no propa-
gation delays, as a benchmark term (dashed and dotted lines
plus x marks for the average value); 3) estimate achieved with
the proposed method, with propagation delays (dashed lines
plus * for the average value); 4) estimate achieved with the
two-step estimation method leading to the ratio ω∗(y)/ω∗(1)

(solid lines plus circles for the average value). From Figure 2,
we can see that, in the absence of delays, the (decentralized)
iterative algorithm based on (4) behaves, asymptotically, as
the (centralized) globally optimal ML estimator. In the pres-
ence of delays, we observe a clear bias (dashed lines), due to
the large delay values but still with a final estimation vari-
ance close to the ML estimators. Interestingly, the two-step
procedure provides results very close to the optimal ML esti-
mator, with no apparent bias, in spite of the large delays and
the random channel fading coefficients.

[FIG2] Estimated value standard deviation.
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NETWORK TOPOLOGY AND ENERGY EXPENDITURE
The totally distributed approach used to achieve a distributed
consensus is appealing because it does not need a fusion center.
However, there is penalty to be paid due to the iterative process
necessary to achieve the consensus. The overall energy neces-
sary to achieve the final decision is the sum of the powers trans-
mitted by each sensor multiplied by the convergence time. As
shown in [26], the convergence rate of the proposed algorithm
is proportional to Kλ2(LA), where λ2(LA) is the algebraic con-
nectivity. In the simple case in which all nodes transmit with
the same power pT, the total energy consumption is [32]

E(pT) = α
NpT

λ2(LA(pT))
, (10)

where with λ2(LA(pT)) we make explicit the dependence of the
algebraic connectivity on the single node transmit power pT,
through the Laplacian; α is a multiplicative factor determined
by the requirement on the final accuracy. Interestingly, we may
observe that the higher the transmit power, the higher is λ2(LA)

and hence the faster is the convergence. However, at the same
time, the higher is also the numerator of (10). Hence, there
exists, in general, an optimal pT resulting in the best trade-off
between the local transmit power and the convergence time, as
shown in [32]. 

IMPLEMENTATION ISSUES
An example of implementation based on a phase-locked loop
(PLL) is illustrated in Figure 3. The received signal is
r(t) = ∑n

j=1 aij cos(2π f0 t + xj(t)) , where f0 is the nominal
carrier frequency. The received signal is beaten with the refer-
ence signal u(t) = sin(2π f0 t + xi(t)) obtained as a 90-degree
phase-shifted version of the output of the voltage-controlled
oscillator (VCO), q(t) = cos(2π f0 t + xi(t)), which is also the
transmitted signal. The low-pass filter removes the components
with spectrum centered around 2 f0 and its output is
z(t) = K

ci

∑n
j=1 aij sin(xj(t) − xi(t)) . It is easy to check that

the input of the VCO is a special case of (4), corresponding to
h(x) = sin(x). Hence, a single PLL scheme, plus the associated
sensing device, is sufficient for implementing the whole node
evolving according to the interaction model (4). What is also
important to observe is that it is not necessary for the receiver
to discriminate the signals transmitted by different sensors, as

opposed to the conventional average consensus techniques:
What is really necessary is that the receiver be able to get the
summation given by z (t). As a consequence, the medium
access control may be implemented in a very simple way.

An alternative implementation may be based on impulse
radio technology. In such a case, every node transmits a periodic
sequence of pulses, with rate 1/ T. If we take the discrete version
of (4), sampled at a rate 1/ Ts, with Ts � T, that is, 

xi[n + 1] = xi[n] + Tsgi(yi) + KTs

ci

N∑
j=1

aij h(xj[n − nij ]

− xi[n]) + wi[n], i = 1, 2, . . . , N,

we can associate the pulse position ti[n] of the i th oscillator,
within the n th period, to the state variable xi[n]. In this case,
consensus, as used in this article, refers to the situation in which
all nodes reach the same interpulse time ti[n + 1] − ti[n].

KEY CHALLENGES FOR FUTURE RESEARCH
In conclusion, the use of self-synchronization mechanisms
appears to possess great potential for devising simple and effec-
tive schemes for implementing globally optimal decentralized
decision systems. One nice feature of the proposed approach is
the possibility to make the network converge either to a global,
common set of parameters or to form clusters of consensus by
properly devising the network connectivity. The approach is
useful also for self-synchronization of wide area networks,
where the propagation delays cannot be neglected. The self-syn-
chronization capability might be especially useful if merged with
type-based multiple access schemes to get coherent transmis-
sions. A key parameter affecting the performance of decentralized
algorithms is the algebraic connectivity, as this influences both
the energy spent by the network to achieve consensus and the
convergence time. The latter parameter determines the maxi-
mum rate of change of the monitored phenomenon that the net-
work may be able to track. An especially important contribution
to this area would be the incorporation of the properties of ran-
dom graphs, possibly with a clear physical motivation, into the
analysis of the convergence capabilities. Moreover, more compli-
cated tasks than just estimation of a set of parameters or multi-
ple hypothesis testing should be addressed with, probably, more
sophisticated interaction mechanisms. Finally, we note that fur-
ther cross fertilization between mathematical biology and dis-
tributed signal processing, an example of which has been
presented in this article, has great potential for future emerging
applications in distributed systems.
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[FIG3] Implementation of (4) as a phase-locked loop.
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