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ABSTRACT

Recent results have shown that the mathematical tools consid-
ered for modelling populations of coupled oscillators appear-
ing in nature provide an appealing framework for designing
self-syncronizing sensor networks. Trendy signal processing
applications take advantage of these works by coupling the
sensors in order to design reliable decision/estimation net-
works based on cheap and unreliable sensors. In this work,
we extend those results to take into account that the coupling
function might suffer from noise due to the need of estimating
the states of the nearby sensors.

The novelty of this paper is the introduction of the con-
cept offrustration in the design of wireless sensor networks.
Frustration implies that synchronization is only possible up
to a certain variance standstill floor. We provide the ana-
lytic expression of this floor and discuss some limiting cases.
In order to assess the performance of the self–synchronizing
network, we propose a simple signal model for the transmis-
sion of states from node to node and study its Cramér–Rao
Bound and the asymptotically efficient Maximum Likelihood
estimator. Taking into consideration these achieved estima-
tion variances, computer simulation results are provided dis-
cussing the coupling noise effect and the obtained theoretical
lower bound.

1. INTRODUCTION

Synchronization appears spontaneously in many biological
systems. In Malaysia, thousands of fireflies flash in unison
each night, being one of the most wonderful phenomenons
of nature. Although they initially flash incoherently, syn-
chronization somehow emerges without the need of a master
clock or a leading firefly. Many efforts have been devoted
to the study of this and other biological systems such as the
chorusing crickets and the firing of neurons. Another sys-
tem highly reliable and stable (hopefully), composed of many
unreliable coupled oscillators, is the one driven by the car-
diac pacemaker cells. Each pacemaker cell has an unstable
period. However, the human heart is one of the most stable
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master clocks of nature. But, how does synchronism emerge
from disorder? This question has triggered research, attempt-
ing at modeling the coupling mechanisms that allow a pop-
ulation of oscillators to synchronize spontaneously. Peskin
proposed a pulse–coupled model for pacemakers cells [1], in
which all oscillators are assumed to be identical. Later on, it
was proved that Peskin’s model inevitably synchronizes [2].
For non–identical oscillators, Winfree [3] studied the case of
phase–coupled oscillators. He showed that when the cou-
pling between oscillators is small w.r.t. the spread of natu-
ral frequencies of each oscillator, the system does not syn-
chronize. The system remains in an incoherent state until
the coupling is increased up to a certain threshold, in which
clusters of oscillators appear to be synchronized. For high
coupling strengths, the whole network of oscillators becomes
frequency–locked. Kuramoto proposed a solvable and ana-
lyzable nonlinear model for phase–coupled oscillators [4].

The first attempt to merge the modelling of biological os-
cillators and the design of wireless sensor networks (WSN) is
due to Hong and Scaglione [5]. They considered Peskin’s
model to design sensors as pulse–coupled oscillators. Its
main drawback is that information is encoded as a temporal
shift, which can be jeopardized by propagation delays causing
an unsolvable ambiguity. Recently, Barbarossa proposed the
use of Kuramoto’s model to design WSN as a population of
phase–coupled oscillators [6, 7], showing appealing synchro-
nization properties. In this work, we extend the [6, 7] to take
into account that mutual coupling suffers from inherent errors
due to the need of estimating the phases of nearby sensors.

This paper is organized as follows. In Section 2, we
expose the model that considers this coupling noise effect
and introduce the concept offrustration. Frustration implies
that synchronization is only possible up to a certain variance
standstill floor. The analytical expression of the minimum
achievable variance is obtained and limiting cases are stud-
ied. This constitutes a novel result in the design of self–
synchronizing WSN in the sense that this work quantifies the
error committed due to the estimation of the phases of nearby
sensors for a general case. In Section 3, we propose a simple
signal scenario to transmit phases between nearby sensors.
We consider the Craḿer-Rao Bound (CRB) of that parame-
ter and the Maximum Likelihood Estimator (MLE) for this
scenario. The behavior of the self–synchronizing network is
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studied considering the effects of incoherent mutual couplings
between sensors and it is compared to the theoretical bound.

2. SELF–SYNCHRONIZING COUPLED
OSCILLATORS AND FRUSTRATION

We consider a WSN composed ofN nodes, spatially dis-
tributed according to an arbitrary topology. Each node senses
a physical parameter, maps the estimate into a variableωi and
initializes a dynamical system. We consider an extension of
Kuramoto’s model [4] to describe the time evolution of the
states of each sensor. The dynamical system of thei–th sen-
sor is coupled with the state of other sensors as

θ̇i(t) = ωi +
K

ci

N∑

j=1

aijf (θj(t)− θi(t)) , i = 1, . . . , N (1)

whereθi(t) represents the state of thei–th sensor, randomly
initialized within the interval(−π, π] and the functionf(·) is
monotonically increasing, nonlinear and odd.ci quantifies the
degree of confidence of thei–th sensor in its own estimate,
thus determining the degree of adaptation to other sensors’
states.K is a control loop gain, which drives the network of
oscillators to global synchronization, partial synchronization
or no synchronization at all [6, 8]. The coefficientaij ≥ 0
takes into account the coupling strength between each pair of
sensors. Notice thataij = 0 iff the pair of sensors has null
connectivity ori = j. In the sequel we assume that the links
between two nodes are symmetric, i.e.aij = aji.

Notice that the dynamical system presented in equation
(1) is coupled to the states of nearby sensors,θj(t). However,
in a practical scenario these states are not perfectly known
but estimated. This fact must be considered in the coupling
model, thus extending equation (1) to

θ̇i(t) = ωi +
K

ci

N∑

j=1

aijf(θ̂j|i(t)− θi(t)), i = 1, . . . , N (2)

being θ̂j|i(t) the estimation performed by thei–th sensor of
the state of thej–th sensor. This fact introduces a new in-
gredient in the synchronization behavior:frustration[8]. The
classical concept of frustration stands for constant biases in
the coupling function. Here we consider stochastic frustration
due to the randomness introduced by the estimatesθ̂j|i(t).
Frustration implies that the states coupling differences are in-
coherent, i.e.̂θj|i(t)− θi(t) 6= 0 even if two sensors are syn-
chronized having identical states. If we consider the MLE of
the state of sensorj, for large sample sizes it is asymptotically
distributed as

θ̂j|i(t) ∼ N (θj(t), CRBi(θj(t))) (3)

whereCRBi(θj(t)) is the Craḿer-Rao Bound (CRB) on vari-
ances, which is a lower bound for any unbiased estimator.

Hence, ifσ2
ij denotes the variance of the estimate of sensorj’s

phase by thei-th sensor, it follows thatσ2
ij ≥ CRBi(θj(t)).

We define synchronization as the network state where
all sensors oscillate with the same pulsation, i.e.θ̇i(t) =
θ̇∗(t), ∀i. In the abscence of coupling noise, a well known
result [6, 7] is the common oscillating pulsation. Considering
the oddness off(·), multiplying both sides of (1) byci and
taking the summation overi, we obtain that

θ̇∗(t) .=

(
N∑

i=1

ciωi

)
·
(

N∑

i=1

ci

)−1

(4)

However, when we introduce noise due to the estimation of
the phases of other sensors this result is not correct anymore.
In this case, operating as in equation (4), the common pulsa-
tion when we consider frustration results in

θ̇∗f (t) =

N∑
i=1

ciωi

N∑
i=1

ci

+
K

N∑
i=1

ci

N∑

i=1

N∑

j=1

aijf(θ̂j|i(t)− θi(t))

= θ̇∗(t) +
K

N∑
i=1

ci

N∑

i=1

N∑

j=1

aijf(Ψij(t) + νij(t))

Ψij(t) = θj(t)− θi(t) (5)

where we have defined the phase difference asΨij(t) and
νij(t) is the error committed by sensori when estimating
the j–th state. νij(t) is a zero-mean Gaussian r.v., consid-
ered i.i.d. for eachij–pair, whose variance depends upon the
achieved estimation performance, which we consider equal
for all sensors, i.e.σ2 .= σ2

ij , ∀i, j. Notice that in the case
of no coupling noise (σ2 = 0), equation (5) equals (4). In
what follows we choosef(·) = sin(·) as the coupling func-
tion, which reduces to Kuramoto’s model whenaij = 1,∀i, j.
In addition,K is choosen such that the network achieves a
global synchronization state [6].

We are interested in quantifying the variance of the error
between the expected synchronized pulsation and the actual,
i.e. |θ̇∗f (t) − θ̇∗(t)|2. For the sake of clarity, we start our
discussion with the case of two coupled oscillators and then
extend the results for the case of arbitraryN .

2.1. Two coupled oscillators case

When we consider two oscillators (N = 2), the common os-
cillation frequency is provided by

θ̇∗f (t) = θ̇∗(t) + ξ(t) (6)

ξ(t) =
Ka
N∑

i=1

ci

(sin(Ψ(t) + ν1(t)) + sin(−Ψ(t) + ν2(t)))



where we have definedΨ(t) .= Ψ12(t) = −Ψ21(t), ν1
.= ν12,

ν2
.= ν21 anda

.= a12 = a21 for the sake of clarity.ξ(t) rep-
resents the noise contribution to the coupling pulsation due to
the coupling noise effect. In order to evaluate the degradation
of θ̇∗f (t) w.r.t to the ideal valuėθ∗(t), we study the variance
of ξ(t), which will provide a synchronization misadjustment
bound.

σ2
ξ = E

{
ξ2(t)

}
= K2a2

(
N∑

i=1

ci

)−2

E {P (t)} (7)

P (t) = (sin(Ψ(t) + ν1(t)) + sin(−Ψ(t) + ν2(t)))
2

after some straightforward mathematical manipulations we
obtain that

P (t) = (sin(Ψ(t)) (cos(ν1(t))− cos(ν2(t)))

+ cos(Ψ(t)) (sin(ν1(t)) + sin(ν2(t))))
2

= sin2(Ψ(t)) (cos(ν1(t))− cos(ν2(t)))
2

+ cos2(Ψ(t)) (sin(ν1(t)) + sin(ν2(t)))
2

+ sin(Ψ(t)) cos(Ψ(t)) (cos(ν1(t))− cos(ν2(t)))
· (sin(ν1(t)) + sin(ν2(t))) (8)

When taking the expectation ofP (t) we use that
E {cos(α) sin(β)} = 0 if α and β are independent Gaus-
sian r.v.’s andβ has zero mean. Thus, after plain but lengthy
calculations we obtain that

P (Ψ(t), σ2) = E
{

1 +
1
2

(cos(2ν1(t)) + cos(2ν2(t)))

· (
sin2(Ψ(t))− cos2(Ψ(t))

)

− 2 sin2(Ψ(t)) cos(ν2(t)) cos(ν1(t))
}

whereP (Ψ(t), σ2) .= E {P (t)}. Beingν(t) ∼ N (0, σ2), we
defineg(σ2) = E {cos(ν(t))}. We can express the synchro-
nization error variance in equation (7) as a function ofσ2, i.e.
the variance of the estimator of phases.

σ2
ξ = K2a2

(
N∑

i=1

ci

)−2

P (Ψ(t), σ2) (9)

P (Ψ(t), σ2) = 1 + 2 sin2(Ψ(t))(g(4σ2)− g2(σ2))− g(4σ2)

The latter provides a closed form equation of the variance
of ξ(t), since it follows from [9, eq. 45.3.20.70] that

g(σ2) = e−
σ2
2 . (10)

A study of the limiting behavior of equation (9) deter-
mines the bounds of expected variance of the synchroniza-
tion error. Notice thatg(4σ2) − g2(σ2) < 0, ∀σ2 and that
E {P (t)} > 0 by definition. Thus, the maximum value
of P (Ψ(t), σ2) is achieved wheng(4σ2) − g2(σ2) does not
contribute, i.e. whenΨ(t) = mπ, m ∈ Z, we obtain
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Fig. 1. Variance bounds ofE
{
|θ̇∗f (t)− θ̇∗(t)|2

}
as a func-

tion of σ2.

Pmax = (1 − e−2σ2
). On the other hand, whenΨ(t) =

(2m + 1)π/2,m ∈ Z, we obtain the minimum achievable
variance value asPmin = (1− e−σ2

)2. Hence, the minimum
achievable variance of the common pulsation of the network
lies between the following limits

K ′a2(1− e−σ2
)2 ≤ σ2

ξ ≤ K ′a2(1− e−2σ2
)

E
{
|θ̇∗f (t)− θ̇∗(t)|2

}
≥ σ2

ξ (11)

where we have definedK ′ = K2

(
N∑

i=1

ci

)−2

.

It is a revealing result that, when there is a noise error in
the mutual coupling function, the worst case occurs when the
two sensors appear to be phase–synchronized or with oppo-
site phases, i.e.Ψ(t) = {0, π} respectively. In contrast, the
lower variance is achieved when the sensors are in quadrature,
Ψ(t) = ±π/2.

Notice thatσ2
ξ depends on the actual realization of the

dynamical system. Thus, the variance bounds are useful to
determine the lower and upper values of the MSE between the
expected common synchronization pulsation (θ∗(t)) and the
achieved pulsation, represented in Figure 1. However, from
equations (9) and (10) an instantaneous variance bound can
be computed for each specific realization.

2.2. N coupled oscillators case

In this section, we extend the results ofσ2
ξ bounds to the gen-

eral case of a population ofN oscillators. In this case, we
have that

ξ(t) =
√

K ′
N∑

i=1

N∑

j=1

aij sin(Ψij(t) + νij(t)), (12)



and

σ2
ξ = K ′ · E








N∑

i=1

N∑

j=1

aij sin(Ψij(t) + νij(t))




2




= K ′ ·
N−1∑

i=1

N∑

j=i+1

a2
ij · E

{
P (Ψij(t), σ2)

}
(13)

provides the instantaneous variance value for a given realiza-
tion as a function of eachΨij(t), aij andσ2.

We consider networks of oscillators which, altough to-
tally connected, need not be fully meshed. As previously
defined,aij = 0 means oscillatorsi and j are not con-
nected andaii

.= 0, ∀i. In addition, we can assume that
a

.= aij ,∀aij 6= 0. Taking this into account, there are terms
in equation (13) that must be neglected when aiming at study-
ing limiting cases because it may happen that someij–pairs
do not contribute toσ2

ξ . As a practical choice, we consider
that each oscillator is coupled with itsd nearest neighbors in
subsequent numerical simulations,1 ≤ d ≤ N − 1. Defining
Np as the total number of pairs for whichaij 6= 0, the bounds
on the common pulsation variance in theN–oscillators case
amount to

K ′a2Np(1− e−σ2
)2 ≤ σ2

ξ ≤ K ′a2Np(1− e−2σ2
). (14)

For a fully–meshed network,Np = N(N − 1)/2.

3. DEGRADATION OF SYNCHRONISM DUE TO
THE COUPLING NOISE EFFECT

As mentioned in Section 2, the self–synchronization perfor-
mance of the coupled system is degraded because of the need
of estimating states from other sensors. Since the CRB pro-
vides the minimum expected variance due to the estimation of
those states (σ2|min), we can evaluate the impact of coupling
noise in the network for a given estimator.

We now consider a specific setting in order to obtain val-
ues of expected estimation varianceσ2. We consider that sen-
sorj transmits its state in a sinusoidal signal and that sensori
receives a corrupted version of it:

yij [`] = bij cos(2πfj` + θj) + n[`], ` = 0, . . . , L− 1 (15)

whereL is the number of samples considered. The unknown
parameters to estimate in the received signal are the ampli-
tude (bij > 0), natural oscillating frequency (ωj = 2πfj and
0 < fj < 1/2) and phase (θj). The received signal is cor-
rupted by a zero–mean additive white Gaussian noise with
unit variance, so that the signal-to-noise ratio (SNR) can be
straightforwardly obtained as SNRij = b2

ij/2. Without loss
of generality, we consider that the multiple access technique
is implemented by a higher layer protocol, being the estimates
computed independently.

We now consider the CRB of the parameters in (15) and
their MLE, which turns to be a simple operation that facil-
itates its implementation in cheap sensors. These are well-
known results which can be computed analogously as done in
[10, pg. 56,193], resulting in the following variance bounds

var
(
b̂ij|i − bij

)
≥ 2σ2

L

var
(
f̂j|i − fj

)
≥ 12

SNRij(2π)2L(L2 − 1)

var
(
θ̂j|i − θj

)
≥ 2(2L− 1)

SNRijL(L + 1)
(16)

and ML estimates

f̂j|i = arg max
f





2
L

∣∣∣∣∣
L−1∑

`=0

yij [`]e−j2πfj`

∣∣∣∣∣

2


 (17)

b̂ij|i =
2
L

∣∣∣∣∣
L−1∑

`=0

yij [`]e−j2πf̂j|i`

∣∣∣∣∣

θ̂j|i = arctan




−

L−1∑
`=0

yij [`] sin(2πf̂j|i`)

L−1∑
`=0

yij [`] cos(2πf̂j|i`)





With these results we can evaluate the degradation due to
the estimation of other sensors’ states in the coupled dynam-
ical system. Notice that these variances depend both on the
number of samples and on the SNR of the received signal.

For the following simulations, we consider a network
composed of40 sensors andd = 4. We plot the average
frequency MSE in the network w.r.t.̇θ∗(t) given by equation

(4), i.e. E
{
|θ̇∗f (t)− θ̇∗(t)|2

}
. Its theoretical bound, analyti-

cally computed from equation (13), is plotted as dash-dotted
curves. The case ofno frustration is presented as a bench-
mark, this is the case wherêθj|i(t) = θj(t) ⇔ σ2 = 0. In
Figure 2 the performance for a number of SNR values is pre-
sented, considering the variance provided by the CRB when
L = 1000 samples. The average frequency error diverges
from the optimal curve to a standstill error floor. The level
of that floor depends onσ2 ∝ 1/SNR. As predicted by the
bounds onσ2

ξ , whenσ2 increases, the minimum achievable
variance increases also. ForL = 100 samples, the perfor-
mance degradation is higher for the same SNR values, since
the variance of the estimates increases, as predicted by the
CRB. In any case, the achieved MSE attains the bound com-
puted in Section 2. Thus, the obtained closed-form solution
of σ2

ξ constitutes a framework for quantifying the degree of
frustration in self-synchronizing networks.

4. CONCLUSIONS

Biological mutually phase-coupled oscillators concepts ap-
peared to be a powerful tool for designing WSN. Recent lit-
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Fig. 2. Average network frequency MSE for the case of no
coupling noise (perfect knowledge of states of nearby sen-
sors) for several SNRs (L = 1000).

erature, mainly due to Barbarossa, has merged these two top-
ics to configure sensor networks with self–organizing capa-
bilities. This paper has presented an extension of the latter
by considering that the knowledge of the phases of nearby
sensors cannot be assumed perfect in a WSN application.
Instead, the phases must be estimated and the variances of
those estimates drive the network to a synchronization stand-
still error floor. We have introduced the concept offrustra-
tion in the design of self-organizing WSN, which considers
that θ̂j|i(t) − θi(t) 6= 0 even if two sensors are synchronized
having identical states due to the estimation variance. We
have determined the common pulsation error due to frustra-
tion as a function of the variance of the phase estimates and
bounds of the power of this error have been analytically ob-
tained. Aiming at quantifying the degree of frustration in an
implementable system, we have proposed a signal model for
the transmission of states of sensors to its neighbors. We have
studied the MLE and CRB as a benchmark, showing that the
MSE results obtained attain the theoretical bound presented
in this paper.
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