Unit 1 Atomic Structure I
Dalton’s atomic theory and its failure, Thomson’s experiment charge on electron - Millikan’s Oil Drop Technique,e/m ratio of an electron- Chadwick’s experiment atomic number,Rutherford’s and - limitations of Rutherford’s model - Maxwell’s electromagnetic theory of radiation and s model, Bohr’s model of hydrogen atom - Bohr’s theory and Ritz combination principle, spectra – emission and absorption - Hydrogen spectrum, Bohr-Sommerfeld theory.

Unit 2 Atomic Structure II
Planck’s quantum theory of radiation, dual character of electrons - de Broglie’s equation and experiment-Heisenberg’s uncertainty principle - photoelectric effect, Compton, Zeeman and Stark effects, Schrodinger wave equation, eigen values, significance of wave function (ψ and ψ̅) and quantum numbers, Schrodinger wave equation for hydrogen and hydrogen-like systems (no derivations, only the final equation), probability distribution of electrons around the nucleus - distribution of 1s, 2s & 2p electrons or orbitals, shapes of atomic orbitals - s, p, d and f, aufbau principle, Hund’s rule, Pauli’s exclusion principle, electronic configuration of elements.

Unit 3 Chemical Bonding I
Electrovalency and ionic bond formation, ionic compounds and their properties, lattice energy, Born-Lande equation and its application, Born-Haber cycle and its application, solvation enthalpy and solubility of ionic compounds, covalent bond, covalency, formation of H2 in terms of decrease of energy, orbital theory of covalency - sigma and pi bonds - formation of covalent compounds and their properties.

Unit 4 Chemical Bonding II
Hybridization and geometry of covalent molecules - VSEPR theory - polar and non-polar covalent bonds, polarization of covalent bond - polarizing power, polarisability of ions and Fajan’s rule, dipole moment, percentage ionic character from dipole moment, dipole moment and structure of molecules, co-ordinate covalent compounds and their characteristics, metallic bond - free electron, valence bond and band theories, weak chemical bonds – inter and intra molecular hydrogen bond - van der Waals forces.

Unit 5 Chemical analysis and stoichiometric calculation

TEXTBOOKS:

REFERENCES:

18CHY111 GENERAL CHEMISTRY II 3 1 0 4

Unit 1 Nuclear Chemistry

Size, structure and stability of the nucleus - n/p ratio, packing fraction, mass defect and binding energy - nuclear fission and fusion, atom bombs -hydrogen bomb – radioactivity, alpha, beta particles and gamma radiation - Soddy-Fajan displacement law, half and average life period - Geiger-Muller Counter and Wilson Cloud Chamber. applications of radioactivity - in medicine, agriculture, carbon and fossil dating - isotopes, isobars, isotones, isodiapheres and nuclear isomers - natural and artificial radioactivity, artificial transmutation of elements, induced radioactivity, preparation of transuranic elements, Q values, nuclear coulombic barrier .

Unit 2 Solid State

Crystalline and amorphous solids, isotropy and anisotropy, elements of symmetry in crystal systems indices - Miller indices, space lattice and unit cell, Bravais lattices, the seven crystal systems and their Bravais lattices, X-ray diffraction - Bragg’s equation and experimental methods (powder method and rotating crystal technique), types of crystals - molecular, covalent, metallic and ionic crystals - close packing of spheres – hexagonal, cubic and body centered cubic packing, interstices in packing - types of crystals – molecular, covalent, metallic crystals - defects in crystals – stoichiometric, non-stoichiometric, extrinsic and intrinsic defects.

Unit 3 Liquid state

Properties of liquids-viscosity, surface tension, capillary action, evaporation, vapour pressure, boiling point and distillation, heat transfer involving liquids

Unit 4 Acids, Bases and Non-aqueous solvents

Concepts of acids and bases – hard and soft acids and bases - Pearson’s concept, HSAB principle and its application - basis for hard - hard and soft - soft interactions - non-aqueous solvents - general characteristics of non-aqueous solvent - melting point, boiling point, latent heat of fusion and vaporization, and dielectric constant - reactions such as complex forma-
tion, redox, precipitation and acid base type in non-aqueous solvents like liquid ammonia, liquid SO₂ and liquid HF.

Unit 5 Water Technology

TEXTBOOKS:

REFERENCES:

18CHY184 Inorganic Quantitative lab. –Volumetric Analysis 0 0 2 1

Acid base titrations
3. Estimation of sodium hydroxide and sodium carbonate in a mixture (analysis of commercial caustic soda) by double indicator method.

Redox titrations
Permanganometry
7. Estimation of Ferrous iron.
Dichrometry
8. Estimation of ferrous iron using external and internal indicators.
9. Estimation of ferric iron using external and internal indicators.

Iodimetry and Iodometry
10. Standardisation of sodium thiosulphate using potassium iodate, Electrolytic copper and potassium dichromate.
11. Estimation of As2O3 and arsenite
12. Estimation of copper sulphate.
15. Estimation of tin in solder using EDTA.

TEXTBOOKS:

REFERENCES:

18CHY202 PHYSICAL CHEMISTRY I 3 1 0 4

Unit 1 Kinetic Theory of Gases

Kinetic molecular model of gases – Maxwell distribution of velocities and its use in calculating molecular velocities (average rms and most probable velocity and average kinetic energy) - Collision diameter, mean free path and viscosity of gases including their pressure and temperature dependence – Relation between mean free path and coefficient of viscosity – behaviour of real gases – deviation of gases from ideal behaviour – compressibility factor – van der Waal's equation of state - its derivation and application in explaining ideal gas behaviour – virial equation of state – van der Waals equation expressed in virial form and calculation of Boyle temperature – Isotherms of real gases and their comparison with van der Waal's isotherms – Determination of molecular mass by limiting density method – critical phenomena – critical constants and determination.

Unit 2 First law of thermodynamics and Thermo chemistry

System and surrounding – isolated, closed and open systems - state of the system - Intensive and extensive variables. Thermodynamic processes - reversible and irreversible, isothermal and adiabatic processes - state and path functions - exact and inexact differentials, concept of heat and work. First law of thermodynamics – statement. Relation between Cp and Cv, calculation of w, q, dE and dH for expansion of ideal and real gases under isothermal and adiabatic conditions of reversible and irreversible processes. Thermochemistry Enthalpy change of a reaction and different enthalpy changes - relation between enthalpy of reaction at constant volume (qv) and at constant pressure(qp) - temperature dependence of heat of reaction - Kirchoffs equation - of solution and dilution bond energy and its calculation from thermo chemical data - Integral and differential heats.

Unit 3 Second and Third laws of Thermodynamics
Second law of thermo dynamics - different statements of the law - Carnot’s cycle and efficiency of heat engine - Carnot’s theorem - thermodynamic scale of temperature - concept of entropy - definition and physical significance of entropy - entropy as a function of P, V and T - entropy changes during phase changes - entropy of mixing - entropy criterion for spontaneous and equilibrium processes in isolated system - Gibb’s free energy (G) and Helmholtz free energy (A) - variation of A and G with P, V and T - Gibb’s - Helmholtz equation and its applications - thermodynamic equation of state - Maxwell’s relations..

Unit 4 Chemical equilibria

Unit 5 Solutions

TEXTBOOKS:

REFERENCES:

18CHY203INORGANIC CHEMISTRY I 3104

Unit 1 s block elements

Unit 2 p block elements

Unit 3 d block elements

Unit 4 f block elements
Position in the Periodic Table - General characteristics of Lanthanides and Actinides - Lanthanide contraction and its consequences. Isolation of Lanthanides from Monazite including the Ion exchange resin method. Actinides - occurrence and preparation, comparison with lanthanides. Chemistry of Thorium and Uranium - Important compounds - preparation, properties and uses of Uranium hexafluoride, Thorium dioxide.

Unit 5 Metallurgy

TEXTBOOKS:

REFERENCE BOOKS:

18CHY212 PHYSICAL CHEMISTRY II 3104

Unit 1 Phase Equilibria

Definition of terms: Phase, components and degrees of freedom – Derivation of Gibbs phase rule - application of phase rule to one component system: Water, carbondioxide and sulphur system – Reduced phase rule - Two component system: Simple eutectic system: Pb-Ag system, Pattinson's process. Thermal analysis and cooling curves, Compound formation with congruent melting point Zn – Mg., and incongruent melting point Na – K system. Metal systems forming continuous solid solutions and solid solutions with minimum and maximum melting points.

Unit 2 Chemical Kinetics

Molecularity and order of a reaction, rate law expression and rate constant - first, second, third and zero order reactions, pseudo-first order reactions (pseudo-unimolecular reactions), complex reactions - equilibrium and steady state approximations - mechanism of these reactions - effect of temperature on reaction rates - Arrhenius equation and its derivation, activation energy, characteristics of activated complex Theories of reaction rates – collision theory – derivation of rate constant of bimolecular gases reaction – failure of collision theory – Lindemann’s theory of unimolecular reaction. Theory of absolete reaction rates – derivation of rate for a bimolecular reaction – significance of entropy and free energy of activation.

Unit 3 Catalysis

Unit 4 Electrochemistry I

Electrolysis, Faraday’s laws of electrolysis, strong and weak electrolytes specific, equivalent and molar conductance, equivalent conductance at infinite dilution and their measurement - Kohlrausch’s law and its applications - calculation of equivalent conductance at infinite dilution for weak electrolytes, degree of dissociation of weak electrolytes - solubility of sparingly soluble salts - applications of conductivity measurement - conductometric titrations - acid-base precipitation and complexometric titrations, Ostwald’s dilution law and its limitations, common ion effect and its application, concept of pH, indicators, theories of indicators – buffers and their pH - Henderson equation, hydrolysis and example of hydrolysis - relation between K_h, K_b and K_w, transport number (Hittorf number) and its experimental determination - Hittorf’s method and moving boundary method.
Unit 5 Electrochemistry II

Potential and its origin – electrical double layer and equilibrium – single electrode potential, standard hydrogen electrode - EMF series and its significance – Galvanic cells, IUPAC notation - reversible and irreversible cells, electrodes, calomel and Ag/AgCl reference electrodes - indicator and ion selective (pungor) electrodes and their applications, Computation of cell EMF, Calculation of thermodynamic quantities of cell reactions (ΔG, ΔH and K) Concentration cells -variation of potential with concentration, Nernst equation and its applications, potentiometric titrations - acid-base, redox and precipitation titrations..Corrosion –basic concept - electrochemical corrosion and its mechanism - Cathodic and anodic protection-Inhibitors

TEXTBOOKS:

REFERENCES:

18CHY213 ORGANIC CHEMISTRY I 3 1 0 4

Unit 1 Basic concepts in Organic Chemistry
Composition of organic compounds – detection and estimation of elements – carbon, hydrogen, nitrogen, oxygen, sulphur, phosphorous, halogens – Calculation of empirical and molecular formula - determination of molecular weights – physical and chemical methods - empirical formula and molecular formula – Classification and Nomenclature of organic compounds.

Unit 2 Organic reactions and their mechanisms

Unit 3 Isomerism and Stereochemistry

Unit 4 Alkanes, cycloalkanes, alkenes and alkynes

Unit 5 Homocyclic Aromatic compounds and Aromaticity

TEXTBOOKS:

REFERENCES:

18CHY281 Inorganic Qualitative Lab. 0 0 3 1

I. Qualitative Analysis:

Analysis of mixtures containing two anions (one simple and one interfering) and two cations (of different groups) from the following:

Anions - HCO_3^-, CO_3^{2-}, Cl^-, F^-, Br^-, Γ, NO_3^-, BO_3^{3-}, SO_4^{2-} and PO_4^{3-}

Cations - Pb^{2+}, Bi^{3+}, Cd^{2+}, Al^{3+}, Fe^{2+}, Fe^{3+}, Mn^{2+}, Zn^{2+}, Ca^{2+}, Sr^{2+}, Ba^{2+}, Mg^{2+}, K^+, Na^+ and NH_4^+, Cu^{2+}, Mn^{2+}.

Note:
1. Mixtures requiring elimination of phosphate and borate radicals should not be given (avoid cations like Ba^{2+}, Sr^{2+}, Ca^{2+} and Mn^{2+} when phosphate and borate are given).
2. Combinations like Cl^- and Br^-, Γ and Cl^- and NO_3^- and Br^- shall be avoided.
3. Salts that yield SrSO_4, BaSO_4, CaSO_4, PbSO_4 and FeSO_4 on double decomposition shall be avoided.
4. The two cations in the mixture should belong to different groups. However, combinations like Mg^{2+} and NH_4^+, K^+ and NH_4^+ can be given.

II. Preparations: (Any six from the following)
1. Ferrous ammonium sulphate
2. Tetrammine copper (II) sulphate
3. Potassium trisoxalato chromate
4. Prussian Blue
5. Hexammine Cobalt (II) chloride
6. Nickel dimethyl glyoximate
7. Potassium trisoxalato ferrate (III)
8. Tristhioureacopper (I) sulphate
9. Ferric alum
10. Potash alum
11. Mohr Salt from Kipp’s waste.

TEXTBOOKS:

REFERENCES:

18CHY282 Basic Organic Qualitative Lab. 0 0 2 1

1. Basic idea on the preparation of reagents used in organic analysis. (Borshes reagent, Schiff’s reagent, phenolphthalein, Neutral FeCl3, Tollens reagent, Fehlings solution),

2. Determination of boiling point and melting point – capillary method,

3. Methods of re-crystallisation,

4. Tests for elements: Nitrogen, Halogens and Sulphur

6. Study of the reactions of the following functional groups: alcohol, aldehyde, ketone, carboxylic acid, 1,2 dicarboxylic acid, ester, primary and secondary amines,

7. Systematic analysis of the following organic compounds containing one functional group and characterization with a derivative - alcohol, aldehyde, ketone, carboxylic acid, 1,2 dicarboxylic acid, ester, primary and secondary amines.

REFERENCES:

Unit 1 Introduction to Quantum Chemistry

Introduction to quantum mechanics, Planck’s quantum theory of radiation, photoelectric effect - dual nature of radiation, de Broglie’s hypothesis - dual character of matter, uncertainty principle, Schrödinger wave equation - time dependent and time independent (no derivation), wave function ψ and its physical meaning, application of Schrödinger equation - particle in a one-dimensional box with two infinite potential barriers (energy of the particle, quantum number and quantization, momentum of the particle, energy level diagram, zero point energy, forms of the wave, node) and utility of this model, application of quantum mechanics to problems in chemistry - quantum chemistry (mention a few applications).

Unit II – Basics of Group Theory

Symmetry- Elements of symmetry and symmetry operations – identity, proper axis of rotation, plane of symmetry, improper axis of rotation and center of inversion. Group and group theory- brief mathematical introduction, abelian and cyclic groups. Molecular point groups, classification and nomenclature of point groups- conditions and examples of non-axial, axial, dihedral and infinite point groups. Algebra of symmetry operations, matrix representations of symmetry operations, group multiplication table.

Unit 3 Irreversible and Statistical Thermodynamics

Reversible and irreversible thermodynamics, examples for irreversible processes, postulate or assumption of local equilibrium, entropy production - entropy production in heat flow and in matter flow, forces and fluxes, introduction to statistical thermodynamics, system, assembly, ensemble, canonical and micro canonical ensemble, Boltzmann distribution law (no derivation), partition function, qualitative and basic ideas of Maxwell-Boltzmann statistics, Bose-Einstein statistics and Fermi-Dirac statistics, bosons and fermions.

Unit 4 Photochemistry

Unit 5 Surface Chemistry and Colloids

Absorption – physical and chemical - adsorption isotherms, Freundlich and Langmuir isotherms, positive, negative and electrostatic adsorption, applications of adsorption, colloidal state, dispersed phase, dispersion medium, types of colloidal systems, sols, gels and foams - lyophobic and lyophilic colloids, preparation by mechanical and electrical dispersion and chemical methods, purification by electrodialysis, and ultrafiltration, properties - colour, optical and electrical properties, qualitative idea of electrical double layer (Helmholtz-Perrin theory, Gouy-Chapman theory, Stern’s theory), stability of lyophobic and lyophilic sole, isoelectric point, protection of colloids - protective colloids, Gold Number, Hofmeister series, coagulation or flocculation - addition of electrolytes, continuous dialysis and salting out, Hardy-Schulze law, coacervation, sensitization, micelle and critical micellisation concentration, application of colloids.

TEXTBOOKS:

REFERENCES:

1. Donald A McQuarrie, “Quantum Chemistry”, Viva Books Private Ltd.

18CHY302 INORGANIC CHEMISTRY II 3 1 0 4

Unit 1 Coordination Chemistry I

Unit 2 Coordination Chemistry II

Unit 3 Organometallic compounds

Definition, classification and nomenclature of organometallic compounds, Ylides, classification on the basis of hapticity. Catalytic properties of organometallic compounds - alkene hydrogenation, synthesis of water gas – shift reaction, Zeiger-Natta polymerisation, Wilkinson catalyst - 18 electron rule, metal-alkene complexes, metal-alkyne complexes, carbene and

Unit 4 Metal Carbonyls and Metal clusters
Preparation and properties of mononuclear carbonyls. Structures of Mo\(\text{CO})_6\), Fe\(\text{CO})_5\) and Ni\(\text{CO})_4\). Polynuclear carbonyls, bridged carbonyls and bonding in metal carbonyls. Preparation and properties of carbonyls of Fe and Ni. Metal clusters - carbonyl and halide clusters, low nuclearity carbonyl clusters and high nuclearity carbonyl clusters, electron counting schemes for Rh\(\text{Re})_6\) and [Os\(\text{Re})_6\)]\(\text{2}^+\) metal only clusters (Zintl ions).

Unit 5 Bioinorganic Chemistry

TEXTBOOKS:

REFERENCES

Ethers: Nomenclature, preparation and reactions - Claisen rearrangement, Zeisel's method – crown ether structure. **Thioalcohols** - general physical and chemical characteristics.

Unit 3 Aldehydes and Ketones

Nomenclature, classification and preparation of aldehydes and ketones – reactivity of carbonyl groups – acidity of alpha H. Reactions – Oxidation, reduction, metal hydride reduction, nucleophilic addition, Wittig reaction, Grignard reagent, Michael addition, Cannizaro, Aldol, Perkin, Knoevenagel, Benzoin, Claisen, Reformatsky, Beckmann rearrangement, stobbe condensation (with mechanism).

Unit 4 Carboxylic acids, Acid derivatives and Active methylene compounds

Dicarboxylic acids – preparation of oxalic, malonic, succinic, glutaric, adipic, phthalic acids and unsaturated acids (acrylic, crotonic and cinnamic, maleic and fumaric).

Active methylene compounds: Synthesis and application of ethyl acetoacetate, diethyl malonate and cyano aceto esters.

Acid derivatives: Preparation/reaction of acid chlorides, acid anhydrides, amides, esters, acid/alkaline hydrolysis of esters, trans-esterification.

Derivatives of carbonic acids: Preparation, properties and structure of urea, manufacture of urea and thiourea, preparation and basicity of guanidine.

Unit 5 Organic compounds containing Nitrogen

Nitro compounds – Nomenclature, preparation and properties of aliphatic and aromatic nitro compounds. Reduction of nitro benzene under various conditions. Di and tri substituted aromatic nitro compounds – synthesis of o-, m-, p- dinitrobenzenes and tri nitrobenzene. **Amino compounds** – nomenclature and classification. Carbonylamine reaction, diazotization – comparison of aliphatic and aromatic amines. Reductive amination of aldehydic and ketonic compounds.

Diazonium salts – preparation and reactions. Diazoalkanes and azides Cyan compounds.

TEXTBOOKS:

REFERENCES:
Unit 1 Theoretical principles of qualitative and quantitative analysis

Types of analytical methods - Importance of analytical methods in qualitative and quantitative analysis - chemical and instrumental methods - advantages and limitations of chemical and instrumental methods. Data Analysis - Types of errors, minimization of errors, propagation of errors, accuracy and precision, least square analysis, average standard deviation, coefficient of variance, significant figures.

Unit 2 Chromatographic Techniques

Theory of separation, chromatographic separation, chromatographic techniques - Column chromatography, thin layer chromatography, Paper chromatography, Ion-exchange chromatography, gas chromatography - principle, Significance of Rf-values. HPLC, GC-MS, bioseparation - electrophoresis, centrifugation, DNA/protein separation, purification, polymer separation, green separation process, separation using zeolite and polymer membranes.

Unit 3 Thermal Analysis

Principle of thermo gravimetry (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC) - Instrumentation and Characteristics of TGA and DTA curves, factors affecting TGA and DTA curves. Applications - TGA of calcium oxalate monohydrate, DTA of calcium acetatemonohydrate - determination of purity of pharmaceuticals by DSC, Thermometric titrations.

Unit 4 Electro analytical Techniques

Conductometry - ion selective electrodes. Potentiometry, Amperometry, coulometry, polarography, voltametry - cyclic voltametry and anodic stripping voltametry - Principle and analysis of samples.

Unit 5 Crystallographic and Microscopic Techniques

TEXTBOOKS:

REFERENCES:

18CHY313 ORGANIC CHEMISTRY III 3 1 0 4

Unit 1 Polycyclic and Heterocyclic Aromatic Compounds

Unit 2 Carbohydrates

Unit 3 Amino acids, Proteins, vitamins and Nucleic acids

Unit 4 Alkaloids, terpenes, enzymes and Photochemistry

Unit 5 Synthetic polymers, oils, fats and detergents

TEXTBOOKS:

REFERENCES:

18CHY314 INORGANIC CHEMISTRY III 3104

Unit 1 Inorganic Polymers
Properties of Inorganic polymers - silicones - composition, manufacture, structure properties and uses, silanes and their polymers, applications of phosphazenes, silicates and their polymers - classification into discrete anions - one, two and three dimensional structures with examples - composition, properties and uses of beryl, asbestos, talc, mica, zeolites and ultramarmes.

Unit 2 Inorganic Nanomaterials
General introduction to nanomaterials and emergence of nanotechnology; Moore’s law; synthesis of nanoparticles of gold, rhodium, palladium, platinum, iron and silver; Synthesis of nanoparticle semiconductors, nanowires and nanorods; Techniques of synthesis: electroplating and electrophoretic deposition, conversion through chemical reactions and lithography; Thin films:
Chemical vapor deposition and Atomic layer deposition techniques; Carbon fullerenes and Nanotubes - applications of nanoparticles.

Unit 3 Molecular Recognition
The concepts of Molecular Recognition, Host, Guest receptor systems. Forces involved in Molecular Recognition – Hydrogen bonding, ionic bonding, p-stacking, van der Waal’s and hydrophobic interaction.

Unit 4 Supra molecular Chemistry
Supra molecular Chemistry - Introduction to molecular receptors - design principles - tweezers, cryptands and carcerands – cyclophanes - cyclo dextrins and calixarenes - typical examples for Molecular Recognition and catalysis - catalysis by cation receptor, anion receptor and cyclophanes - Molecular Recognition in DNA and protein structure.

Unit 5 Chemical Aspects of Soil
tionship in soil - microbes in pest and disease management - Bio-conversion of agricultural wastes.

TEXT BOOKS:

REFERENCE BOOKS:

18CHY315 BASIC SPECTROSCOPIC TECHNIQUES 3 1 0 4

UNIT 1 – Electromagnetic spectrum

UNIT 2 – Electronic Spectroscopy

UNIT 3 – Vibrational Spectroscopy

UNIT 4 - NMR Spectroscopy

Principle of nuclear magnetic resonance – basic instrumentation – number of signals - chemical shift – shielding and deshielding. Spin-spin coupling and coupling constants. TMS as NMR standard. Introduction to H1 and C13 NMR spectrum. Interpretation of proton NMR spectra of simple organic compounds such as Acetone, Anisole, Benzaldehyde, Ethyl acetate, Ethylamine , Ethyl Bromide, Toluene and Isopropyl phenyl ketone.

UNIT 5 – Mass Spectrometry
Basic Principles – instrumentation – molecular ion peak, base peak, metastable peak, isotopic peak their uses. Fragmentation pattern – Nitrogen rules- determination of molecular formulae – Types of mass analysis. Interpretation of mass spectra of simple organic compounds such as acetone, anisole, Benzaldehyde, Ethyl acetate, Ethylamine, wethyl Bromide, Toluene and Isopropyl ketone. Mc-Lafferty Rearrangement.

Text Books:

Reference Books:

18CHY331 BATTERIES AND FUEL CELLS 3 0 0 3

Unit 1 Background Theory

Origin of potential - electrical double layer - reversible electrode potential - standard hydrogen electrode - emf series - measurement of potential - reference electrodes (calomel and silver/silver chloride) indicator and ion selective electrodes - Nernst equation - irreversible processes - kinetic treatment - Butler-Volmer equation - Overpotential, activation, concentration and IR overpotential - its practical significance - Tafel equation and Tafel plots - exchange current density and transfer coefficients.

Unit 2 Batteries: Primary Batteries

The chemistry, fabrication and performance aspects, packing classification and rating of the following batteries: (The materials taken their function and significance, reactions with equations, their performance in terms of discharge, capacity, and energy density to be dealt with). Zinc-carbon (Leclanche type), zinc alkaline (Duracell), zinc/air batteries; Lithium primary cells - liquid cathode, solid cathode and lithium-ferrous sulphide cells (comparative account).

Unit 3 Secondary Batteries

Lead acid and VRLA (valve regulated (sealed) lead acid), nickel-cadmium, nickel-zinc, nickel-metal hydride batteries, lithium ion batteries, ultrathin lithium polymer cells (comparative account) Advanced Batteries for electric vehicles, requirements of the battery - sodium-beta and redox batteries.

Unit 4 Fuel Cells

Description, working principle, anodic, cathodic and cell reactions, fabrication of electrodes and other components, applications, advantages, disadvantages and environmental aspects of the following types of fuel cells: Proton Exchange Membrane Fuel Cells, alkaline fuel cells, phosphoric acid, solid oxide, molten carbonate, direct methanol fuel cells. **Membranes for fuel cells:** Nafion – Polymer blends and composite membranes; assessment of performance – recent developments.
Unit 5 Fuels For Fuel Cells
Hydrogen, methane, methanol - Sources and preparation, reformation processes for hydrogen – clean up and storage of the fuels – use in cells, advantages and disadvantages of using hydrogen as fuel.

TEXTBOOKS:

REFERENCES:

18CHY332 CORROSION SCIENCE 3 0 0 3

Unit 1 Introduction to corrosion
Mechanisms of Chemical corrosion, electrochemical corrosion, Concentration cell corrosion, Pitting corrosion, Intergranular corrosion, Waterline corrosion, Stress corrosion.

Unit 2 Cathodic protection
Basis of cathodic protection, working of cathodic protection, electrochemical theory of cathodic protection, design parameters in cathodic protection, cathodic protection interferences.

Unit 3 Corrosion kinetics

Unit 4 Corrosion prevention by design
Corrosive environment, Stages in design processes, Soldering and threading, crevices, flowing water systems, design for liquid containers, design in packaging, coating and design, storage of combat vehicles.

Unit 5 Selection of materials for corrosive environment
Factors affecting the performance of materials, Materials classification, materials and fluid corrosivity, Corrosion behavior of several materials.

TEXTBOOKS:

REFERENCES:

18CHY333 GREEN CHEMISTRY 3 0 0 3
Unit 1 Introduction to Green Chemistry
Introduction - inception and evolution of green chemistry - principles of green chemistry - the green chemistry expert systems - the measure of greenness - safety and risk indices - the hierarchial approach - green chemistry and sustainable development - pollution control to pollution prevention - Indian perspective on green chemistry - information technology and sustainable development.

Unit 2 Green reagents
Green reagents - safer solvents - green solvents - water as a solvent - solvent free conditions - supports reagents - ionic liquids and their applications - super critical systems (CO₂) as green solvents - hydrogen peroxide in green oxidation reactions - dimethyl carbonate, a green solvent and an ambient reagent.

Unit 3 Green chemical techniques I
Environmentally benign technologies by green chemistry (with examples) - microwave assisted synthesis - electro-organic synthesis - photochemical degradation as a green approach for waste treatment - catalysis and green chemistry - supported catalysts and reagents for green chemistry - heterogenized reactions for green chemistry - oxidation technology for waste water treatment - green chemistry using biocatalytic reactions.

Unit 4 Green chemical techniques II
Aqueous phase reactions, solid state reactions, enzymatic transformations, sonicated reactions - usual organic reactions (Benzoin condensation, Michael Addition, Heck Reaction, Darzen reaction, Heck reaction, Claisen arrangement) in a greener way.

Unit 5 Green industrial processes and operations
Cleaner production - industrial perspectives - reactions and reactor designs - micromixers - unit operations - reactions with separation processes alternate energy resources - inherent safety - green chemistry and industries - the pharmaceutical industries and green chemistry - the polymer industry - pesticides, antifoulants, and herbicides - solvents and green chemistry - the food and flavor industry - the maleic anhydride manufacturing process - chelants - the surfactant industry - industries in need of support to go green - the semiconductor manufacturing industry - the dye industry - the textile industry - the tannery industry - the sugar and distillery industries - the paper and pulp industry - the paint industry - Green chemistry in future.

TEXTBOOKS:

REFERENCES:

18CHY334 INDUSTRIAL CATALYSIS 3 0 0 3

Unit 1 Catalysis
An introduction, general principles of catalysis, activation energy plots for catalytic processes, classification for catalysis - heterogeneous and homogeneous catalysis, van’t-Hoff’s
and Arrhenius treatment of homogeneous catalysis - kinetic aspects, adsorption and general
principles of heterogeneous catalysis - kinetic aspects, determination of surface area and
pore-structure of the catalyst, definition of performance criteria of catalysts, activity, selectiv-
ity, temperature response, catalyst life.

Unit 2 Catalysis in Solutions
Acid and base catalysis, catalysis in gas phase, catalysis in dilute aqueous solutions, catalysis
in concentrated strong acid solutions, catalysis by bases, catalysis by metal ions, electron
transfer catalysis, catalysis by co-ordination and organometallic compounds, catalysis in
Ziegler-Natta, metallocene, metathesis, catalysis by enzymes.

Unit 3 Polymers and Zeolites in Catalysis
Catalysis by polymers, polymer supported catalysts, catalysis in polymer gels, phase transfer
catalysis, catalysis in molecular scale cavities, zeolites - molecular sieves, shape selective
and size selective catalysis

Unit 4 Catalysis by Metals, Metal Oxides and Supported Metals
Electronic factors in catalysis by metals, valence bond and electron band theories, electronic
factors in catalysis by semiconductors, co-operative electronics interactions and catalysis,
localized interactions and catalysis, surface states and catalysis, role of supports, preparation
and structure of supports, silica, alumina, silica-alumina, carbon, monolithic supports, surface
properties, catalyst manufacture, catalyst size and shape, pretreatments, deactivation proc-
esses, sintering, poisoning and catalyst fouling.

Unit 5 Industrially Important Catalytic Processes
Catalysis and green chemistry, catalysis by ionic liquids, catalytic reforming, catalytic cracking,
hydrotreatment, steam cracking, Fisher Tropsch process, mobil process for conversion of
methanol to gasoline hydrocarbons, catalysis for environmental protection, removal of pol-
lutants from exhausts, mobile and static sources, effluent clean up analysis, applications in
the production of fertilizers, acetic acid, formaldehyde, washing powder additives, pharma-
ceuticals.

TEXTBOOKS:

REFERENCES:
3. Ronald Pearce, William R. Patterson, ‘Catalysts and Chemical Processes’, Wiley,
 1981.

18CHY335 INTRODUCTION TO FOOD CHEMISTRY

Unit 1 Introduction
Introduction: Definition of Food, major components of food, Physical States of Food -
Dispersions true solutions, colloidal, emulsions, foam and gel, factors affecting stable
dispersion of food ingredients, functions of emulsifiers and stabilizers. Water - Functions of
water in food systems, hydrogen bonds, permanent dipole moment dielectric constant, theories of solvent action, water activity and food stability, absorption isotherm curve, roles of water in physical properties and chemical reactions in food theories and applications of different moisture determination methods.

Unit 2 Proteins and Carbohydrates

Protein - Classifications, nomenclature, and structures of aminoacids, basic properties of protein, structure of proteins, protein functional groups and their chemical, hydrophobic, and hydrophobic properties, isoelectric point and solubility as a function of pH, protein denaturation and its effects on food systems, nutritional quality of protein, theories & applications of analytical methods for protein and amino acids determination.

Carbohydrates - Classification, nomenclature, and structures of Carbohydrates, isomers and absolute configurations of Carbohydrates, physical – chemical properties of Carbohydrates, sweetness of Carbohydrates, functions of Carbohydrates in foods, chemical reactions of Carbohydrates, analytical methods for Carbohydrate determination.

Unit 3 Lipids and minerals

Lipids - Nomenclature and structures of fatty acids, classifications of lipids, physical and chemical characteristics of different fats, relationship between chemical structure and fat melting properties, analytical methods for determining different physical and chemical characteristics of fat, lipid oxidation mechanisms, principles and applications of analytical methods for the determination of fat content and fatty acid compositions of foods.

Minerals - Ash determination methods, principles and applications of different methods for determining individual minerals – atomic absorption and flame spectrometry’s, and chemical methods.

Unit 4 Vitamins

Vitamins - Water soluble and fat soluble vitamins, chemical reactions and losses of vitamins during processing and storage. Principles and techniques for the determination.

Unit 5

Pigments in food flavours, browning reaction in foods, Enzymes in foods, and food industry, bio-deterioration of foods, food contaminants, Food additives and toxin.

REFERENCE:

SUGGESTED READINGS

5. Potter, N.N. 1978. Food Science. 3rd Ed. AVI, Westport

18CHY336 POLYMER CHEMISTRY 3 0 0 3

Unit 1 Introduction to polymers and polymerization

Unit 2 Polymer Stereochemistry and characterization

Unit 3 Polymer Solutions

Unit 4 Polymer additives, blends and composites

Unit 5 Industrial and speciality polymers
mers. Polymers in optical lithography. Polymer photo resists. Electrical properties of Polymers, Polymers with NLO properties, second and third harmonic generation, and wave guide devises.

TEXTBOOKS:

REFERENCES:

18CHY337 SURFACE SCIENCE AND COATING TECHNOLOGY 3 0 0 3

Unit 1 Introduction to Paints and Paint Technology
General introduction to paint industry - definition of paints, varnishes and lacquers their constitution and functions, general classification of surface coatings - decorative and protective coatings - paint industries in India.

Unit 2 Pigments Dyes and Extenders
Definition and classification of pigments and dyes - properties and evaluation of pigments such as crystal structure particle size and shape, refractive index and Hiding power, oil absorption, colour, specific gravity and bulking value, UV and IR absorption, light fastness, resistance to heat water, alkali and acid, corrosion inhibition, toxicity, reducing power, tinting strength, flooding and floating, settling, volatile and water soluble matter, residue on sieve, bleeding - white pigments and colored pigments - organic and inorganic pigments - industrial manufacture of pigments - special effect pigments - Extenders - use and functions of extenders - examples for extenders.

Unit 3 Binding media, solvents and additives in paints

Unit 4 Paint Formulation, Manufacture and application techniques
Principles of paint formulation, formulation elements, mathematics & steps: PVC, CM, P/B ratio, Sp gravity, etc; Typical formulations of primers, undercoats and finish coats - Steps in paint manufacturing, phenomenon of wetting, grinding and dispersion, important considerations in pigment dispersion and rheology - different milling and mixing techniques - factors affecting effectiveness of milling such as size, speed and type of mill; volume, composition, size and shape of grinding medium - mill base. Surface preparation techniques - Physical and chemical surface treatment techniques - Common application techniques - packaging technology.

Unit 5 Colour Technology, Paint properties and Quality Control in Paint Industries
18CHY353 FORENSIC SCIENCE 3 0 0 3

UNIT I-INTRODUCTION

Origin of forensic science, need for forensic science, trace and contact evidence, marks and impression, examination of documents, blood stain analysis, microscope in analysis, explosives, chemical analysis of explosives, forensic laboratories and courses in India.

UNIT II-NARCOTICS

Narcotics, classification of drugs, specific drugs- Psychotropic drugs, chemical screening of drugs, chemical extraction and sample preparation, chemical identification of drugs using analytical methods.

UNIT III – FINGERPRINTING and FIREARM ANALYSIS

History of fingerprinting, principles of fingerprinting, constituents of latent finger marks, fingerprint detection, chemical methods of detection, firearm examination, chemical analysis of firearm, analysis of gunshot residue.

UNIT IV –TOXICOLOGY
Introduction to Toxicology, alcohol and human body, testing of blood alcohol concentration, Toxins & Biological Poisons, Measuring Toxicity as LD50, sample and analysis, inorganic poisons, nerve agents, radioactive toxins, Pharmacokinetics and Toxicokinetics, tests for toxins, reported case studies.

UNIT V- POSTMORTEM TOXICOLOGY

Introduction, tissue and fluid specimens, specimen collection and storage, extraction procedure, analytical techniques, interpretation, case studies

Reference Books:

18CHY383 Basic Physical Chemistry Lab. 0 0 5 2

1. Determination of CST of phenol-water system - effects of KCl/ NaCl salts on CST.
2. Phase diagram of simple eutectic system.
3. To determine the molecular weight of a high polymer by viscosity method.
4. To determine the molecular weight of a solute by Rast method using naphthalene or diphenyl as solvent using Beckmann thermometer.
5. To determine the solubility of benzoic acid at different temperatures and to determine ΔH of the dissolution process.
6. Determination of rate constant of acid catalyzed hydrolysis of an ester.
7. To study the adsorption of acetic acid from its aqueous solution by charcoal.
8. To determine the distribution coefficient of iodine between water and carbon tetra chloride.
9. Determination of transition temperature of the given salt hydrate.

TEXTBOOKS:

REFERENCE BOOKS:

18CHY384 Organic Synthesis and Estimation Lab. 0 0 2 1

1. Basic concepts on theoretical yield, practical yield, samples % conversion etc, Organic preparations including recrystallisation,
2. Synthesis of a) Acetanilide to p-nitroacetanilide b) Acetanilide to p-bromoacetanilide c) Benzyl chloride to Benzoic acid,
d) Nitrobenzene to dinitrobenzene

e) Ester hydrolysis

f) Benzylation (phenol to phenyl benzoate);

3. Separation Techniques: Thin Layer Chromatography, Column chromatography

REFERENCES:

18CHY385 Inorganic Quantitative Lab. – Gravimetric Analysis 0052

1. Gravimetric estimation of barium as barium sulphate.

2. Gravimetric estimation of iron as iron (III) oxide.

3. Estimation of sulphate as barium sulphate.

4. Gravimetric estimation of copper as copper (I) thiocyanate.

5. Gravimetric estimation of nickel as nickel dimethylglyoximate.

7. Estimation of iron in the given sample of haematite by dichromate method.

8. Estimation of copper in bronze by iodometric method.

9. Estimation of tin in solder using EDTA.

TEXTBOOKS:

REFERENCES:

18CHY386 Physical Chemistry Lab. – Instrumental Analysis 0031

1. Determination of cell constant and equivalent conductivities of different electrolyte by conductometrically.

2. Determination of the strength of strong and weak acids in a given mixture conductometrically.

3. Determination of the velocity constant, order of the reaction and energy of activation for specification of acetate by sodium hydroxide conductometrically.

4. Determination of solubility and solubility product of sparingly soluble salt by (e.g. PbSO4, BaSO4) conductometrically.

5. Determination of the strength of strong and weak acids in a given mixture using a potentiometer.

6. Determination of the strength of strong and weak acids in a given mixture using a pH meter.
7. Determination of unknown concentration using photoelectric calorimeter.
9. Determination of concentration of an electrolyte by Nernst equation.
10. Determination of concentration of ions by Spectrophotometer.
11. Determination of concentration of potassium and sodium ion by flame photometry.
12. Determination of transport number of silver ion.

TEXTBOOKS:

REFERENCE BOOKS:

18CHY501 QUANTUM CHEMISTRY 3 0 0 3

Unit I: Quantum Chemistry - Introduction

Origin of quantum mechanics, de Broglie relationship, the uncertainty principle (no derivation); Postulates of quantum mechanics: postulate I – wave functions, postulate II- Operators in quantum mechanics, operator algebra, postulate-III – eigen values, eigen value equations, postulate IV – Expectation value, postulate V – time dependent and time independent Schrodinger equation

Unit II: Applying Schrodinger equation to various general systems

Translational motion of a quantum entity (particle in one dimensional box and three dimensional box); vibrational motion (harmonic oscillator); rotational motion (rigid rotator, particle on a ring and particle on a sphere); angular momentum.

Unit III: Atomic structure and chemical bonding

Hydrogen and hydrogen-like atoms; Multi electron systems- variation methods, perturbation methods, application to the ground state of Helium atom, SCF method, the exclusion principle

Chemical bonding: Hydrogen molecule ion and hydrogen molecule - molecular orbital and valence bond theory, homo and hetero nuclear diatomic molecules from VB and MO theory, the concept of directed valences and hybridization; quantum mechanics in band theory of metallic solids

Unit IV: Electronic structure of polyatomic systems: Computational quantum chemistry
Semi empirical and ab-initio methods; QM approximations, Details of HMO and EHMO and its application to chemical bonding in unsaturated molecules (ethylene, 1,3butadiene etc); Details of SCF procedure, Hartree and Hartree Fock methods (up to ground and excited states of hydrogen molecule); the basis sets, STOs and GTOs, nomenclature of basis sets, basis set errors, introductory ideas on DFT.

Unit V: Molecular properties: Computational quantum chemistry

Calculations of molecular properties like atomic charges, dipole moments, electronic distributions, vibration frequencies, NMR chemical shift etc using Gaussian program, specification of molecular geometry using Cartesian coordinates and internal coordinates, Z-matrix, Z-matrix of some simple molecules, structure of a Gaussian input file.

TEXTBOOKS:

REFERENCES:

18CHY502 Concepts in Inorganic Chemistry 3 1 0 4

Unit 1 Nuclear Chemistry

Nuclear structure, mass and charge, mass defect, binding energy, stability rules, magic numbers, nuclear quantum numbers, nuclear parity and statistics, models of nucleus, shell model, liquid drop model, semi empirical mass equation, equations of radioactive decay and growth, half-life, average life determination of half-lives, nuclear reactions, energetics of nuclear reactions, types of nuclear reactions, spontaneous and induced fission, neutron capture cross sections- critical size principle and working of nuclear reactor. Numerical problems relevant to each session.

Unit 2 Radiation Chemistry

Radioactive elements, decay kinetics, parent-daughter decay relationships, radioactive equilibrium - transient and secular equilibrium, alpha and beta decay, gamma emission, Radiochemical methods - measurement of radioactivity, measurement of radiations - ionization chamber, proportional counter, the Geiger counter, scintillation counter, semiconductor detectors. Applications of nuclear and radiation chemistry, isotope dilution analysis - activation analysis, radioactive tracers, radiometric titrations, radiation dosimetry, hydrated electron.

Unit 3 Inorganic materials I

Alkali and alkaline earth metals, their compounds, crown ethers and cryptands as complexing agents for alkali metal ions, Be and Mg compounds, boron cage compounds, boron hydrides, structure and bonding, 3-centre-2-electron bonds, styx numbers, the importance of icosahedral frame work of boron atoms in boron chemistry, closo, nido and arachno structure, carboranes, metallocene carboranes, B-N
compounds, interstitial compounds, metal carbides, nitrides and hydrides, fullerenes, functionalized fullerenes, C-nanotubes.

Unit 4 Inorganic materials II

Inorganic chains and polymers, rings, cages, and clusters, sulphur-nitrogen compounds, polymeric sulphur nitride, isopoly anions, heteropoly anions, Keggin and Dawson polyoxometallates, borazines, metal clusters, nature of Si-Si bonds, silicates, silicates with zero-, one-, two- and three-dimensional structures, structure of elemental P, phosphonitrilic compounds, polymers with P-N bonds, interhalogen and pseudo halogens, intercalation chemistry, intercalation in layered materials like graphite, xenon fluorides & other xenon compounds.

Unit 5 Chemistry of f-block elements

The lanthanides and actinides, stable oxidation states, the lanthanide and actinide contractions, the f-orbitals, spectral and magnetic properties - comparison with inner transition and transition metals, separation of lanthanides, use of lanthanide compounds as shift reagents, photo-emission of lanthanide compounds, organometallic compounds of lanthanides and actinides and their structural features, reactions of lanthanide and actinide compounds, mineral sands of south west India - Ilmenite, Monazite, etc.

TEXTBOOKS:

REFERENCES:

18CHY503 Principles in Organic Chemistry 3 0 0 3

Unit 1 Aromaticity: Review of inductive and field effects – Resonance effects. Criteria for aromaticity – structural and electronic. Types – H&k and Craig’s rule, homo (Five, Six, seven and eight, membered rings), hetero (furan, thiophene and pyrrole) and nonbenzenoid aromatic systems. Aromaticity of fused rings, annulenes, catenanes, rotaxanes, mesoionic compounds, metallogenes, cyclic carbocations and carbanions.

Unit 2 Structure activity relationships – Orientation effects of substituent, Quantitative treatment of structure on reactivity - free energy relationships – Hammet equations, Taft equation.

Reactive Intermediates: Generation, structure and reactivity - reactions and rearrangement involving) of carbocations - non-classical carbocations, carbonions, carbon radicals, radical ions, carbenes, nitrenes, isonitrenes, aryynes.

Unit 3 Mechanism and methods to determining them: Thermodynamic and kinetic requirement, Baldwin rules for ring closure – Kinetic and thermodynamic control – Hammond postulates, microscopic reversibility, Marcus theory, methods of determinion reaction mechanisms - solvents and their effect on course of a reaction.

Acids and Bases: Bronsted and Lewis acids - HSAB concept and bases, pH and pKa, effect of structure on acidity and basicity, effect of medium.

Unit 4 Stereochemistry

Optical and geometrical isomerism, absolute and relative configuration, Cahn-Ingold-Prelog system, prochirality, prochiral centre, atoms, groups and faces, designations. Atropisomerism, optical isomerism in biphensyls, allenes, spirans and “ansa” compounds, compounds con-
Unit 5 Conformational Analysis

Conformational analysis of cyclic and acyclic systems with special emphasis on six-membered rings, conformational effects on the reactivity of acyclic and cyclic systems - elimination, substitution and addition, strain, structure and stability of small, medium, and large rings, anemic effect - cycloalkenes and cycloalkynes - kinetically and thermodynamically favoured products stereochemistry of SN1, SN2, SNi, E1 and E2

TEXT BOOKS

REFERENCES

and pi-bonding effects, oxidation-reduction reactions, inner and outer sphere electron transfer reactions, conditions for high and low oxidations numbers, reactions of coordinated ligands, hydrolysis of esters, amides and peptides, template reactions, electrophilic substitution, photochemical reactions of coordination compounds.

Unit 3 Coordination Chemistry of Inner-transition (f-block) Elements

f-block metal ions – oxidation states preferences, ligand preferences, coordination numbers and the geometry of the complexes, influence of lanthanide contraction and actinide contraction in their coordination behaviour, shapes of f-orbitals (4f and 5f), nature of bonding of f-orbitals with ligands, various types of coordination compounds of lanthanides and actinides, stereochemistry and reaction mechanism of f-block metal complexes.

Unit 4 Spectral Properties

Stabilization of unusual oxidation states, electronic spectra of transition metal complexes – color wheel, Russell-Saunders coupling schemes, term symbols for various \(d^n\) ions, Orgel diagrams for \(d^8\) systems, ligand field parameters, \(D_{q}\), Racah parameter \(B\) and nephelauxetic constant \(b\), Tanabe-Sugano (TS) diagrams, evaluation of \(D_{q}\) and other parameters from electronic spectra of transition metal complexes using TS diagrams, charge-transfer transitions, MLCT and LMCT, selection rules and band intensities, Laporte- and spin- selection rules, symmetry, spin-orbit and vibronic coupling effects. Photochemistry of transition metal complexes like \([\text{Ru(bipy)}_3]^{2+}\), spectral behaviour of f-block coordination complexes, special features of their absorption and emission properties.

Unit 5 Magnetic Properties

Magnetic properties of coordination complexes - magnetic susceptibility, contribution of spin-orbit coupling on \(\mu_{\text{eff}}\), types of magnetic behavior - para-, ferro, anti-ferro and ferrimagnetic systems, Curie law, Curie-Wise law, Guoy, Faraday and superconducting quantum interference device (SQUID) methods, Kotani plots, giant magnetoresistance (GMR), anisotropic magnetoresistance (AMR) effect, effects of temperature on magnetic behavior, tunneling-magnetoresistance (TMR). Magnetism of coordination complexes by multinuclear homometallic and heterometallic \(3d\) systems (also with exclusive \(4d\) and \(5d\) metal ions), mixed \(3d-4f\) systems, importance of \(4f\)-metal ions for functional applications. Nanoscale magnetic systems based on coordination complexes - Single Molecule Magnets (SMMs), Single Ion Magnets (SIMs), Single Chain Magnets (SCMs), Spin-crossover complexes, magnetic refringents, magnetic storage systems - magnetic random access memory (MRAM).

TEXTBOOKS:

REFERENCES:

18CHY505 GROUP THEORY AND ITS APPLICATIONS 3 0 0 3

Unit I Introduction to molecular point groups

Definition of a mathematical group, Symmetry in molecules, elements of symmetry, matrix representation of symmetry operations, molecular point groups, abelian group, cyclic group, similarity transformation and classes, group multiplication table, symmetry classification of molecules into pointgroups (Schoenflies symbol)

Unit II Construction and interpretation of character tables

Reducible and irreducible representations, Great Orthogonality Theorem and its consequences, character tables, reduction formula, construction of character tables for point groups with order ≤6, interpretation of character tables.

Unit III Applications of Group theory - I (vibrational and electronic spectroscopy)

Infrared and Raman activity of molecular vibrations in H₂O, N₂F₂, BF₃, AB₄type molecules (Td and D₃h) and AB₆ type (Oh) of molecules; selection rules; Electronic structure of free atoms and ions, splitting of terms in a chemical environment, construction of energy level diagrams, estimations of orbital energies, selection rules and polarizations, double groups, a brief idea on electronic spectra of transition metal complexes – selection rules, Orgel diagrams, Tanabe Sugano diagrams.

Unit IV: Applications of Group theory (Chemical bonding - Hybridization and molecular orbital formation)

Group theory to explain hybridization - wave functions as bases for irreducible representations, construction of hybrid orbitals for AB₃ (planar), AB₄ (Td), AB₅ (D₃h) and AB₆ (Oh) type of molecules, symmetry adapted linear combinations, projection operators, application of projection operators to pi-bonding in ethylene, cyclopropenyl systems and benzene, application of symmetry to predict polar and chiral compounds;

Unit V: Symmetry in solid state

Symmetry elements and operations in solid state – proper axis of rotation, mirror planes of symmetry, roto-reflection and roto-inversion axes of symmetry, screw axes of symmetry, glide planes; a brief introduction to the crystallographic point groups and space groups

TEXTBOOKS:

REFERENCES:
Unit 1 Chemical Thermodynamics
First and second laws of thermodynamics, thermodynamic functions, heat capacity, thermo chemistry, need for second law of thermodynamics, entropy and free energy functions, calculation of changes in thermodynamic function for ideal and non-ideal gases in isothermal and adiabatic process, relation between thermodynamic functions - Maxwell relations, Joule Thomson effect, coefficient of thermal expansion and compressibility factor, applications of free energy function to physical and chemical changes, equilibrium in chemical reactions, third law of thermodynamics - need for third law, calculation of absolute entropy, unattainability of absolute zero, thermodynamic systems of variable composition - fugacity functions, partial molar quantities, thermodynamics of ideal solutions, real solutions and regular solutions, dilute solutions of nonelectrolytes, Henry’s law, Raoult’s law, Gibbs-Duhem equations, Gibbs-Duhem-Margules equations, and activity and standard states of non electrolytes.

Unit 2 Irreversible Thermodynamics
Examples for irreversible process, entropy production, non-equilibrium, steady state and near equilibrium conditions, linear relation, phenomenological coefficients, Onsagar reciprocal relations, one component systems with heat and matter transport, application of irreversible thermodynamics to thermal diffusion, thermal osmosis etc., electro kinetic effects, the Glansdorff-Pregogine equation.

Unit 3 Statistical Thermodynamics
Statistical concept, probability and thermodynamic states, entropy and probability, canonical ensemble, Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein Statistics, electron gas concept, Bose-Einstein condensation, relation among MB, FD & BE Statistics, partition function, partition function for free linear motion, free motion in a shared space, linear harmonic vibration, translational, rotational and vibrational partition function, molecular partition functions, partition functions and thermodynamic properties, calculation of equilibrium constant, heat capacity of gases, mono atomic solids, Einstein’s and Deby’s theory.

Unit 4 Equilibrium
Gibb’s free energy, direction of spontaneous change of a reaction, chemical potential, chemical potential and equilibrium, ΔG in terms of K, equilibrium constants – real gases and real reactions, equilibrium respond to catalyst, temperature, pressure and pH, application of ΔG and K – extraction of metals from their oxides, Ellingham diagram, and thermodynamics of ATP & respiration, biological energy conversion.

Unit 5 Phase Equilibrium
Gibb’s Phase rule, one component system, two component systems, vapour pressure diagrams and their interpretation, lever rule, temperature-composition diagrams, liquid-liquid phase diagrams, distillation of partially miscible liquids, azeotropes, liquid-solid phase diagrams, phase diagram for the system Na/K/Na2K, phase diagram - steel, alloys, Fe-C system, zone refining, three component system, triangular coordinates, three component system – partially miscible liquids - H2O/CHCl3/CH3COOH, phase diagram - NH4Cl/(NH4)2SO4/H2O

TEXTBOOKS:

REFERENCES:

18CHY512 MOLECULAR SPECTROSCOPY 3 1 0 4

Unit 1 Rotational and Vibrational Spectroscopy
Introduction to spectroscopy, rotation spectra - diatomic and polyatomic molecules, selection rules, intensities of spectral lines, stark effect, instrumentation of micro wave spectroscopy, applications and structural determinations, vibration spectra of diatomic molecules, harmonic and anharmonic vibrations, diatomic vibrating rotor, selection rule, breakdown of Born Oppenheimer approximation, rotational character of vibration spectra, different modes of vibrations, vibration-rotation spectra, Fermi resonance, vibration spectra of polyatomic molecules, IR spectra of organic and inorganic compounds, phase, temperature and solvent dependence, FTIR technique, instrumentation, Raman spectra (including the use of laser) - theory, relation with IR spectroscopy, mutual exclusion principle, resonance Raman, stimulated hyper and inverse Raman effects, instrumentation and applications of Raman spectroscopy.

Unit 2 UV-Visible and Fluorescence Spectroscopy
Electronic spectra of atoms - single and multi electron systems, j-j and L-S coupling, electronic spectra of diatomic and polyatomic molecules, its relation to electronic arrangement and symmetry of molecules, application of group theory in electronic spectra, selection rules, nature of electronic excitation, principles of absorption spectroscopy, Beer-Lambert law, presentation of spectra, chromophores, forbidden transition, different types of electronic transitions, p-p*, n-p* etc transitions, nature of transitions in carbonyl compounds, the effect of conjugation, effect of conjugation on alkenes, HOMOs and LUMOs, Woodward-Fieser rules for dienes, spectra of carbonyl compounds, enones, Woodward rule for enones, spectra of aromatic compounds, effect of substituents, structural information from electronic spectra, excited states of molecules, fluorescence and phosphorescence, Jablonski diagram in detail, lifetime of excited states, quantum yields, photosensitization, application of UV-Visible and Fluorescence Spectroscopy for structural elucidation of organic compounds, diffuse reflectance spectra.

Unit 3 NMR Spectroscopy
Nuclear magnetic resonance phenomenon - theory, relaxation effects, NMR uses active nuclei, Fourier Transformation in NMR, measurement of relaxation time, chemical shift, mag-
netic anisotropic effect, multiplets in NMR, spin-spin splitting, n + 1 rule, Pascal’s triangle, tree-diagram, spin-spin splitting constant, J, 2J and 3J and long-range coupling, measurement of J, Karplus relationship, first and second order spectra, AX, AB, AX₂, AX₃, A₂X₃, AMX type spectra, double resonance and spin tickling, chemical shift reagents, spectra in higher fields, spectra of conformational isomers, homotopic, enantiotropic and diastereotropic systems, C¹³ spectra, factors related to ¹³C spectra, ¹H coupled ¹³C spectra, ¹H decoupled ¹³C spectra, chemical shift values, nuclear Overhauser effect (NOE), cross-polarization, off-resonance resonance decoupling, application of ¹H and ¹³C NMR spectroscopy for the structural elucidation of organic compounds, ¹¹B, ¹⁵N, ¹⁹F and ³¹P NMR spectra, spectra of paramagnetic complexes, magnetic susceptibility, contact shift, fluxional molecules and their studies using NMR, solid state NMR.

Unit 4 ESR, NQR and Mossbauer Spectroscopy

ESR spectroscopy - theory, hyperfine and superfine splitting, ESR active simple organic systems, ESR of inorganic systems like Cu²⁺ and VO²⁺ complexes, ‘g’ markers like DPPH and TCNE, evaluation of spin Hamiltonian like A, g₁₀, g₋, covalency factor in Cu²⁺ complexes, analysis of ESR spectra of VO²⁺ complexes, NQR spectroscopy - theory, relationship between electric field gradient and molecular structure, quadrupole coupling constant and structural information of compounds, Mossbauer spectroscopy, principle, Doppler effect, isomer shift, Zeeman splitting, quadrupole splitting, application of Mossbauer spectroscopy for studying Fe and Sn compounds and phase transformation, application of ESR spectroscopy.

Unit 5 Mass Spectrometry and PES

Mass spectroscopy, base peak and molecular ion peak, isotope ratio data, fragmentation patterns of alkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, amines, methods of desorption and ionization (EI, CI, LD, MALDI, PD, FAB, SIMS), MS/MS and determination of molecular formula, metastable ions and their significance, study of fragmentation pattern, application of MS in structural elucidation and other frontiers of science, application of MS for quantitative analysis, photoelectron spectroscopy (PES), principle, application of PES. Structure determination using IR, UV-visible, NMR, MS and ESR spectral techniques.

TEXTBOOKS:

REFERENCE:

Unit 1 Nucleophilic Substitution: SN1, SN2, and Borderline (ion pair), SNi, SET mechanisms, Neighboring group participation, substitution at allylic carbons, substitution at aliphatic trigonal carbon, substitution at vinylic carbon. Effect of substrate structure, nucleophile, leaving group and medium on reactivity. Ambident nucleophiles and substrates. Aromatic nucleophilic substitution: SNAr, SN1, benzyne and SN1 mechanisms. Effect of substrate structure, leaving group and attacking nucleophile on reactivity.

Unit 2 Electrophilic substitution: SE2 and SEi, SE1, substitution accompanied by double bond shift. Effect of substrate, leaving group, and solvent on reactivity. Aromatic electrophilic substitution: Arenium mechanism, Structure – reactivity relationship, substituent effect, α/β ratio, ipso substitution, orientation and reactivity, quantitative treatment. Free radical reactions: Radical addition. Effect of substrate (aliphatic, aromatic, bridgehead), nature of the radical and solvent on reactivity.

TEXT BOOKS

REFERENCES

18CHY514 Heterocyclic and Natural Product chemistry 3 0 0 3

Unit 1 Heterocyclic compounds
Nomenclature and general characteristics of heterocyclic compounds, study of three and four-membered ring heterocycles containing one heteroatom, structure and synthesis of penicillin and cephalosporin-C, structure and synthesis of reserpine, heteroaromatic compounds (five and six-membered rings) containing one and two heteroatoms, fused ring compounds - indole, quinoline, isoquinoline, coumarin, flavones, purine and pyrimidine, bases present in nucleosides.

Unit 2 Carbohydrates and nucleic acids
Nomenclature – aldoses, ketoses, furanoses, pyranoses. Classification – monosaccharides, disaccharides and polysaccharides. Structure (Fischer, Haworth and chair projection) of ribose, glucose, fructose, maltose, sucrose, lactose, starch, cellulose and cyclodextrins. Preparation of alditols, glycosides, deoxysugars. Biosynthesis of vitamin C from glucose. Structure and synthesis of nucleic acids, genetic code, recombinant DNA. Biosynthesis of shikimic acid

Unit 3 Chemistry of Natural Products
Alkaloids - classification, structure elucidation based on degradative reactions (quinine atropine), Terpenoids - classification, structure elucidation and synthesis of abietic acid, terpenoids. Total synthesis of quinine and papavarine (morphine, heroin)

Unit 4 Steroids
Steroids - classification, structure of cholesterol, conversion of cholesterol to progesterone, androsterone and testosterone, classification, structure and synthesis of prostaglandins, biosynthesis of fatty acids, prostaglandins, and steroids.

Unit 5 Amino acids, Peptides and Enzymes
Synthesis of amino acids - Strecker and azlactone synthesis, reactions of amino acids, structure of proteins, introduction to enzymes and coenzymes with special reference to the function of chymotrypsin, NAD, thiamine, pyridoxal, solid phase synthesis – choice of resin, classification and reactions leading to peptide formation.

TEXT BOOKS
2. Sujata V. Bhat, Bhimsen A. Nagasampagi, Meenakshi Sivakumar, Chemistry of Natural Products, Springer 2005

REFERENCES
2. Ashutosh kar, Chemistry of Natural Products, (Volume I and II), CBS
Unit 1: Concepts and Metal Carbonyls
History and overview on organometallic compounds. Classification and nomenclature – hapticity of fragments, 18-electron and 16-electron organometallic compounds. Structure prediction based on ‘18 electron rule’. Metal carbonyls – synthesis and bonding of metal carbonyls (based on MO theory), donor and acceptor properties of CO, different types of binding modes of CO, poly-nuclear carbonyls with and without bridging groups, metal-metal bonding in M-CO clusters, cluster valence electron (CVE) count, CVE based structure prediction. IR spectral features of metal carbonyls, activation of CO by bonding with metal ions.

Unit 2: Types of organometallic compounds
Metal phosphines compounds of transition metals, M-N₂ (metal dioxygen), M-O₂ (metal dioxygen), M-NO (metal nitrosyl) and M-CN (metal cyanide/isocyaniide) complexes, bonding and structural features. Organometallic compounds with π-donor ligands like olefins, acetylenes and allyl moieties. Metal derivatives of cyclic π-donors (metallocenes, sandwich/half-sandwich compounds, bent metallocenes), metal-carbon σ-donors (metal carbenes – Fischer carbenes, Schrock carbenes and N-heterocyclic carbenes, metal polynes, metal carbines, metal alkyl/aryl derivatives). Organometallic chemistry of lithium and magnesium, aluminium alkyls and all other main-group organometallics. Structural features and nature of bonding in above compounds.

Unit 3: Structure and Bonding
Fragment molecular orbitals (FMO) of various organic and inorganic moieties like CH₃, CH₂, CH, BH₂, BH, NH₂, NH. FMO’s (π-orbitals) of C₃H₅, C₄H₆, C₅H₅, C₆H₆, C₈H₈. Inorganic fragments MLn with varying number of L’s. Symmetry and shape of their FMO’s. Isolobal concept, iso-electronic and isolobal relationships between various organic and inorganic (MLn) fragments. Structure and bonding between various organic and inorganic fragments based on MO level diagrams – metal-olefins, ML₂-cyclobutadiene, ML₂-carbene, ML₂-carbyne, ML₂-cyclopentadienyl systems, compounds with metal-metal multiple bonds (metal-metal σ, π and δ bonds).

Unit 4: Stereochemistry and reactions
Stereochemically non-rigid molecules, fluxional nature of organometallic compounds (including Li-C, Mg-C), characterization of non-rigidity of organometallic compounds by NMR spectroscopy. Difference in NMR spectra of fluxional organometallic compounds at high and low temperatures. Characterization techniques of organometallic compounds (by NMR – ¹H, ¹³C and ³¹P NMR spectroscopy, Dynamic NMR, Mass spectrometry). Reactions involving various organometallic compounds - oxidative addition reactions, reductive elimination reactions, migratory insertion reactions, 1,1-type and 1,2-type insertion reactions, elimination reactions, β-hydride elimination reactions. Conditions for organometallic compounds to exhibit above reactions, cyclo-metalation and ortho-metalation reactions, agostic interactions.

Unit 5: Organometallic Catalysis

TEXTBOOKS:
5. J.D. Atwood, ‘Inorganic and Organometallic Reaction Mechanism’, 2nd Edn., Wiley-...

REFERENCES:

18CHY581 INORGANIC SEMI-MICRO QUALITATIVE ANALYSIS LAB. 0 0 6 2

Semi micro analysis of mixtures
The mixture will include 4 cations including two common (eg. Cations of metals like Cu, Mn, Zn, Ni, Ca, Ba, Mg etc) and two less common cations (eg. Cations of metals like Ti, Zr, V, W, Li, Ce, Th etc).
(The student has to successfully analyze a minimum of 10 mixtures).

TEXTBOOKS:

REFERENCES:

18CHY582 ORGANIC QUANTITATIVE ANALYSIS LAB. 0 0 6 2

A. Estimations:
Estimation of equivalent weight of an acid
Estimation of glucose
Estimation of phenol
Estimation of acetone
Estimation of acid value of an oil
Estimation of iodine value and sap value of an oil
Estimation of Nitrogen – Kjeldahl method
Estimation of formaldehyde
Estimation of aniline
Estimation of ester

B. Preparations of Organic Compounds

Double stage preparations
(a) m-nitro benzoic acid from ethyl benzoate
(b) p-bromobenzanilide from aniline
(c) p-nitro acetanilide from aniline

Single stage preparations
(a) Benzimidazole
(b) Benzophenone oxime
(c) Dibenzilidene acetone (chalcone)
(d) Benzalacetophenone
(e) Benzanilide
(f) Acetanilide
(g) Acetyl salicylic acid (aspirin)

Name Reactions
(a) Benzil-Benzilic acid rearrangement
(b) Cannizaro reaction
(c) Claisen condensation

For all preparations
1. TLC to be done and Rf values of each compound to be reported
2. Melting point of pure compounds to be found
3. A small portion should be recrystallised from suitable solvent
4. Purified products to be displayed
5. Mechanisms for each preparation should be suggested

REFERENCES:

18CHY583 ADVANCED PHYSICAL CHEMISTRY LAB. 0 0 5 2

1. Construction of phase diagram for three component system.
2. Determination of equivalent conductance at infinite dilution of weak electrolytes.
3. Determination of order of reaction for ion exchange reaction.
4. Extraction efficiency of solute from a solution by immiscible solvent method.
5. Determination of calorific value using Bomb calorimeter.
7. Determination of the formation constant of silver-ammonia complex and stoichiometry of
8. Determination of flash point, fire point of a lubricant.
9. Determination of cloud point and pour point of a lubricant.

TEXTBOOKS:

REFERENCE BOOKS:

18CHY584 INORGANIC QUANTITATIVE ANALYSIS LAB. 0062

1. Estimation of Calcium (Permanganometry)
2. Estimation of Barium (Iodometry)
3. Estimation of Calcium as Calcium Carbonate (Gravimetry)
4. Estimation of Zinc using oxine (Gravimetry)
5. Estimation of Iron as Ferric Oxide (Gravimetry)
6. Analysis of Brass
7. Estimation of Copper and Nickel in a Mixture
8. Estimation of Copper and Iron in a Mixture
9. Preparation and Determination of Ferrous Oxalate
10. Estimation of Different Types of Hardness in the Given Water Sample
11. Estimation of Different Types of Alkalinites in the Given Water Sample
12. Estimation of Dissolved Oxygen in the Given Water Sample
13. Complexometric Estimations

TEXTBOOKS:

REFERENCES

18CHY601 ELECTROCHEMISTRY KINETICS AND SURFACE CHEMISTRY 3104

Unit 1 Surface Chemistry
Different types of interfaces, molecular and atomic surface structure, surface chemical reactions, surface tension of solutions, surface excess, thermodynamics of surfaces, Gibbs equation and its derivation, surface films, surface potential.

AdSORption by solids, Langmuir isotherm - its kinetic and statistical derivation, Freundlich equation, multilayer adsorption, BET isotherm - its kinetic derivation, measurement of surface area.

Colloids - their preparation, purification, stability & electro kinetic phenomena, Donnan membrane equilibrium, micro and nano emulsions.

Surface analysis using photoelectron spectroscopy, surface imaging techniques like SEM, TEM, AFM etc., sputter coating, ion beam principles, design of surfaces with novel properties.

Unit 2 Electrochemistry I

Unit 3 Electrochemistry II

Electrochemical cells, standard electrode potentials, reversible cell, concentration cells with and without Electrochemical cells, standard electrode potentials, reversible cell, cell notation and calculation of emf – variation of potential with concentration, pressure and temperature – concentration cells with and without transference, Liquid Junction Potential – its calculation and elimination - Thermodynamics of cell reactions and equilibrium constant - applications of e.m.f. measurements, potentiometric measurement of pH –reference electrodes - glass and quin-hydrine electrodes and their performance and limitations, – ion selective electrodes – biomembranes, Interfacial region – electrical double layers and their structure – Helmoltz-Perrin, Gouy-Chapman and Stern models - charge transfer across interfaces, mass transport – diffusion and convection controlled transport – irreversible electrode processes - activation, concentration and IR polarisation, decomposition potential, Butler-Vohmer equation - over potential (hydrogen, oxygen and metal decomposition over voltage), theories of over voltage, Tafel equation, and Tafel plots – corrosion and its rate from Tafel equation.

Unit 4 Chemical Kinetics I

Reaction rates and order of reactions, determination of order of reactions, complex reactions, reversible, consecutive and concurrent reactions, reactions of variable order, steady state treatment, reaction mechanism and molecularity, theories of unimolecular reactions and termolecular reactions, Arrhenius equation, collision theory and transition state theory, comparative study of the theories of reaction rates, free energy of activation, effect of solvent on rate of reactions, ionic reactions and effect of ionic strength - salt effect, effect of pressure on velocity of gas reactions.

Unit 5 Chemical Kinetics II

TEXTBOOKS:

REFERENCES:

18CHY602 Synthetic Strategies and Reagents

Unit 1 Synthetic Strategies

Unit 2 Oxidation and reduction:
PCC, DDQ, DMSO, Dess-Martain Reagent, TEMPO, osmium tetroxide, ruthenium tetroxide, selenium dioxide, peracids, hydrogen peroxide, singlet oxygen, aluminium isopropoxide, periodic acid, lead tetraacetate. Swern, Jones, Oppeneur oxidation, Woodward and Prevost hydroxylation, Sharpless asymmetric epoxidation, catalytic hydrogenations (heterogeneous and homogeneous), Clemmenson, Wolff Kishner, Rosenmund and MPV reductions, metal hydrides as reagents (aluminium/boron hydrides and hydroboration reaction), Birch reduction, Borche Reduction, hydrazine and diimide reduction.

Unit 3 Organometallic reagents:
Preparation, properties and reactions of organo lithium, organosilicon, organozinc (Reformatsky reaction) and organomagnesium reagents (Barbier and Grignard), organocadmium, organo mercury reagents based organometallic reactions involving C-C bond formation. Selected functional group transformations in organic synthesis. Preparation and reactions of Organo copper, organopalladium, Wacker process – Heck reaction, cross coupling, carbonylation reaction, organonickel, organo cobalt and organo rhodium reagents – Olefin metathesis reaction. Reactions and applications of Organoboron, organo silicon and organotin compounds.

Unit 4 C-C bond formation

Unit 5C-N, C-O bond formations
C-O bond formation – barton, Fischer esterification, Prins, Darzen, Baeyer-Villiger, Mitsunobu, Williamson’s ether synthesis, Ullman Coupling with Boronic Acids.

TEXT BOOKS
 Press, San Diego, California, 2001
2. Francis A. Carey and Richard J. Sundberg, “Advanced Organic Chemistry - Part B:

REFERENCES
1. Stuart Waren, Designing Organic Synthesis: A programmed introduction to the syn-
2. Name Reactions: A collection of detailed Mechanisms and synthetic applications, Jie

18CHY603 Solid State Chemistry and Materials Science 3003

Unit 1 Introduction to Crystal Systems
Introduction to solids - solid state chemistry, close packing, hcp, fcc, density, coordination
numbers, tetrahedral and octahedral holes, body centered and primitive structures, symme-
try, proper rotation, mirror planes, inversion, improper axis symmetry elements, symmetry
in crystals, Schoenflies and Hermann-Mauguin notations, unit cells, glide plane, screw axis,
atom occupancy in cubic unit cells, seven crystal systems/classes, space groups, Miller indi-
ces, Bravais lattices, reciprocal lattice, inter-planar spacing in different crystal systems, frac-
tional coordinates, ionic solids, structures of CsCl, NaCl, NiAs, zine blende and wurzite
structures, MX2 type solids, fluorite and antfluorite structures, CdCl2 and Cd2 structures,
rutile and anti-rutile, ReO3, spinel and inverse spinel, pervoskite structures, ionic radii, crys-
tal radii, radius ratio, Extended covalent array, diamond, graphite.

Unit 2 Bonding in Solids and Electronic properties
Bonding in crystals, metallic bonding, ionic bonding, covalent bonding, silicates, Born-
Haber cycle, Hess’s law, lattice energy (L) and calculation of L, free electron theory, density
of states, electronic conductivity, molecular orbital theory, overlap and bonding, linear chain
of H atoms, LCAO, Fermi Level, conductors, insulators and semiconductors, n- and p-type
semiconductors, bands in compounds, band-gap energy, direct and indirect band gaps in
semiconductors, band-gap measurements, electrical conductivity, photo-conductivity.

Unit 3 Magnetic and Optical Properties of Solids
Behaviour of substances in magnetic field, magnetic moments, para magnetism, diamagne-
tism, ferro- and anti-ferromagnetism, ferri-magnetism, effects of temperature of magnetism,
Curie & Curie-Weiss laws; mechanism of ferro- and anti-ferromagnetic ordering, super ex-
change. Luminescence and phosphorescence of solid materials, phosphors, lasers, non-
stoichiometry and its effect in properties of solids, electronic properties of non-
stoichiometric oxides. Defects in solids, Schottky defects, Frenkel defects, doping in crystals
and colour features, ruby, diamond, organic conductors, preparation, mechanism of conduc-
tion in organic semiconductors, photoconductivity of polymers.

Unit 4 Materials Science-Structure and properties
Solid materials of importance. Structure and properties of SiO2, ZrO2, SiC, BN, ZnO, TiO2,
CdS, CdTe, GaAs, MoS2. Band-gap properties of semiconductors like ZnO, TiO2, CdS,
CdSe, CdTe, GaAs, MoS2 and (CH3NH3)[PbX3]-type perovskites. Photo-catalytic properties
of ZnO and TiO2 – principle and applications. Inorganic-organic hybrid materials. High Tc
superconductors (HTS) like Bi-Sr-Ca-Cu oxide based HTS (BSSCO) and Y-Ba-Cu-oxide
(YBCO), their structure and properties. Metal-organic framework (MOF) materials, special
features of MOF materials. Synthesis, special features and properties of MOF materials like
HKUST-1 and MOF-8. Gas storage and emission properties of MOF materials. MOFs as sensors. Zeolites, their special features and properties.

Unit 5 Materials Science-Synthesis, processing and characterization

TEXTBOOKS:

REFERENCES

5. F.H. Norton, Elements of Ceramics.,

18CHY604 Bio-inorganic Chemistry 3 0 0 3

Unit 1: Basics in bio-inorganic chemistry

Essential elements in biological systems, transport of ions across biological membranes, active and passive transport, metal transport and metallochaperons, Na+/K+ pump and active transport. Metal complexation with biological molecules. Electron transport in biology, electron transport chain (ETC), role of ETC in biological systems. Amino acids, peptides and proteins, primary and secondary structure of proteins, α-helix and β-sheets forms of proteins and their special features; tertiary and quaternary structures of proteins the type of molecular interactions involved in them . Reactive oxygen species (ROS), generation and function of organic free radicals, action of ROS in biological systems, oxidative stress, antioxidants. Photosynthesis, PS-I and PS–II.

Unit 2: Oxygen take-up, transport and storage proteins

Porphine, corrin, corrole, chlorin and bacteriochlorin. Myoglobin (Mb) and hemoglobin (Hb), their prosthetic groups and functions, mechanism for reversible binding of O2 in Mb and Hb. Cooperative effect in Hb and its consequence. Behaviour of bound O2 to Fe(II). Difference between O2 and CO binding to Hb and Mb, CN– poisoning. Structure and functions
of haemerythrin (Hr) and haemocyanin (Hc), O₂ binding nature in Hr and Hc, electron transfer processes in them. Cytochromes and their role in biology, cytochrome P-450, cytochrome C-oxidase and oxygen transfer from O₂ to non-activated substrates, monooxygenases, methane monooxygenase (MMO). Fe-S and other non-heme iron proteins, ferredoxins-their structure and special properties, transferrin, ferritin, siderophores, enterobactin, uptake, transport and storage of iron. Sickle-cell anemia

Unit 3: Metallo-enzymes

Unit 4: Other functional roles of metal ions
Zn in biological systems, Zn-finger proteins – structural features and properties, classifications and their roles in biological systems. Ca²⁺ binding proteins, calmodulins. Metal ion based (Pt, V, Au) drugs, anticancer agents. Cis-platin and its properties. Chelation therapy, macrocyclic antibiotics. Role of Mn, Ni, Mo and Cr in biological systems, metal toxicity and homeostasis, therapeutic complexes. Diseases caused by both excess and deficiency of metal ions, thalassaemia, Wilson disease. DNA intercalators, diagnostic agents, MRI imaging and contrast agents, the role of Gd³⁺ and other metal ions as contrast agents.

Unit 5: Biomimetic compounds, metals in medicine
Porphyrins (H₂P) and metalloporphyrins (MP), spectral, fluorescence and redox properties of H₂P and MP. Biomimetic compounds. Fe(II), Co(II) and Cu(II) based model compounds model compounds of Mb and Hc – ‘picket-fence’ porphyrin and its special features. Photodynamic therapy (PDT), principles and applications. Natural and synthetic ionophores, crown ethers, interaction and uptake of alkali metal and alkaline earth metal ions with crown ethers, cryptands and cryptates, calixarenes and their special properties, cyclo-dextrins and their special properties.

TEXTBOOKS:

REFERENCES
Unit 1 – Electrodics: Electron transfer under an interfacial electric field, A two way traffic across the interference: equilibrium and exchange current density. Dependence of the electrochemical reaction rate on over potential-Quantitative version of the Butler Volmer equation. Electrode kinetics involving the semiconductor/solution interface. Techniques of electrode kinetics-preparation of electrode surface. Microelectrodes-applications

Unit 2: Industrial Cathodic process - Electrodeposition of copper, nickel and chromium over mild steel – zinc plating on MS – decorative plating of silver and gold – nano plating and microstructure of deposits - Tests for adhesion, hardness, thickness, uniformity and corrosion resistance of the electro deposits-post plating passivation processes-barrel plating of small components - Electroless deposition of nickel, copper, gold on metal components – making of waveguides and plated through hole boards -

Unit 3: Industrial Anodic Processes: Anodising of aluminium and its alloys – baths used, operating conditions and sequence determination of thickness – industrial applications- nano anodizing of tantalum, and titanium – application to sensor field

Electropolishing of ferrous and non-ferrous metals and alloys - mechanism of electropolishing – Electrochemical etching of ferrous and non-ferrous metals –

Special processes: Electrolysis of water – electrowinning of aluminium and sodium – electrolysis of brine-photoelectrochemistry

Unit 4 - Electrochemical energy systems: Primary batteries: Zinc-carbon (Leclanche type), zinc alkaline (Duracell),; lithium primary cells - liquid cathode, solid cathode and lithium-ferrous sulphide cells Secondary batteries: Lead acid and VRLA (valve regulated (sealed) lead acid), nickel-cadmium, nickel-zinc, nickel-metal hydride batteries, lithium ion batteries, ultra thin lithium polymer cells (comparative account) Advanced Batteries for electric vehicles, requirements of the battery - sodium-beta and redox batteries. Reserve batteries thermally activated batteries - remote activation - pyrotechnic materials: Fuel Cells: Principle, proton exchange membrane (PEM), direct methanol(DMFC), molten carbonate electrolyte (MCFC) fuel cells and outline of biochemical fuel cells.

Unit 5 - Electrochemical sensors: Potentiometric sensors, solid state Potentiometric chemical sensors, polymeric membrane sensors, ion selective field effect transistor, application, Hydrovoluetric technique-hydrodynamic voltammetric-application, voltammetric sensors-electrode modification application, optical sensors,-bioamperometric titration. Methods involving forced convection-hydrodynamic methods

Text books

References
18CHY632 BIOANALYTICAL CHEMISTRY 3003

Unit 1 Enzymes
Enzyme nomenclature, Enzyme commission numbers, Enzymes in bioanalytical chemistry, Enzyme kinetics - Enzyme activators, Enzyme inhibitors.

Unit 2 Quantification of Enzymes and their substrates

Unit 3 Immobilized enzymes
Immobilization methods - nanopolymerizing covalent immobilization, Crosslinking with bifunctional reagents. Properties of immobilized enzymes, immobilized enzyme reactions, theoretical treatment of packed bed enzyme reactors.

Unit 4 Antibodies
Structural and functional properties of antibodies, Polyclonal and monoclonal antibodies, Antibody-antigen interactions, analytical application of secondary antibody-antigen.

Unit 5 Biosensors

TEXTBOOKS:

REFERENCE:

18CHY633 CHEMISTRY OF BIOMOLECULES 3003

Unit 1 Amino acids, Proteins and Peptides
Classification, Stereochemical aspects, physical properties, Ionic properties, spectral properties, essential and non essential amino acids, chemical reactions of amino acids, Industrial preparation and chemical synthesis of amino acids. Ionic properties of proteins, protein structure, protein purification, protein structure determination, proteomics and protein function, solid phase peptide synthesis, biologically important peptides.

Unit 2 Enzymes
Introduction to Enzymes, Classification of enzymes, mechanism of enzyme action, immobilized enzymes and enzyme technology, enzyme analog built polymers, design of molecular clefts, enzymes in synthetic organic chemistry. Enzymes in biological systems

Unit 3 Molecular biology and bioinformatics
Structure of nucleic acids, genes and genome complexity, functions of nucleic acids, isolation and separation of nucleic acids, molecular analysis of nucleic acid sequences, nucleotide sequencing of DNA.
Unit 4 Immunochemical techniques
Production of antibodies, purification and fragmentation of immunoglobulins, immunoprecipitation, labeling antibodies, immunoblotting, immunoassays, immunohisto/cytochemistry.

Unit 5 Recombinant DNA and genetic analysis
Constructing gene libraries, cloning vectors, hybridization and gene probes, application of gene cloning, expression of foreign genes, pharmacogenomics.

REFERENCES:

18CHY634 INDUSTRIAL CHEMISTRY 3003

Unit 1 Water treatment
Softening of water, Ion exchange process, Lime soda process, Modified Lime soda process, Zeolite process, Chemical and physical method of sterilization, Desalination, Boiler problems. Corrosion of boiler units, industrial water treatment, water analysis.

Unit 2 Fuels
Calorific value, determination of Calorific value, classification of fuels, Solid fuels, Properties of fuels, classification of coal, coking and non-coking coals, advantages and disadvantages of solid fuels. Liquid fuels, gaseous fuels, analysis of fuel gases, Distillation of petroleum. Processing & purification of petroleum and petroleum products, Flash point, Fire point, Knocking, antiknocking, Cetane number, octane number, natural gasoline, cracking, polymerization, alkylation, isomerisation, rocket fules, fossil fules, nuclear fules.

Unit 3 Energy resources
Renewable and non renewable sources of energy, conventional and non conventional sources of energy, solar energy, solar technology, solar photovoltaic cell - application, PV lantern system, Radiotelephone system, Application of solar energy, Environmental implication, Nuclear energy, nuclear fuel cycle in India, Energy conservation and waste heat boilers, Fuel cells, hydrogen cells.

Unit 4 Paints and Pigments
White pigment, blue, green, yellow, black and red pigments - manufacture, physical properties, characteristics, Manufacture of paints, setting of paints, requirement for good paints, emulsion paint, latex paint, luminescent paint, fire retardant paints, heat resistant paints, varnishes, manufacture of varnishes, enamels, lacquers.

Unit 5 Explosives and Toxic Chemical Weapons
Introduction, Classification. Deflagrating or low explosives. Characteristics of explosives, nitrocellulose, PETN, DNB, TNB, TNT, Picric Acid, Nitroglycerine, Dynamite, Cirdite, Gun powder, RDX, EDNA, HMX, Tetryl, Pentryl, Hexyl, Dinol. Toxic chemical weapons, screening smokes, Incendiaries, Pyrotechniques, Explosives in India.

TEXTBOOKS:
REFERENCES

18CHY635 INDUSTRIAL STOICHIOMETRY 3 0 0 3

Unit 1 Introduction to process calculation - dimensions and systems of units - fundamental quantities of units, derived quantities, definition and units of force, volume, pressure, work, energy, power, heat-unit conversions in FPS, MKS and SI systems.

Unit 3 Description and simple material balance calculation of physical processes such as drying, distillation, absorption, mixing, crystallization, Evaporation.

Unit 4 Single stage material balance calculation of leaching and extraction, calculations involving recycling and by passing operation - limiting reactant, excess reactant, conversion, yield and selectivity - simple numerical for finding yield, conversion and composition.

Unit 5 Calculation of material and energy balance based on reactions involving heat capacity and specific heat - mean heat capacity of gases - heat capacity of gas mixture and liquid mixture. Calculations of heat capacity by integral equation up to three terms - sensible and latent heats of fusion, sublimation, vaporization. Calculations of standard heat of formation from heat of combustion data. Calculations for heat of reaction from heat of formation and heat of combustion data – Fuels - calorific values proximate and ultimate analysis - air requirement and composition of flue gases.

TEXTBOOKS:

REFERENCE BOOKS:

18CHY636 MATERIAL SCIENCE AND NANOCHEMISTRY 3 0 0 3

Unit 1 Introduction to NanomaterialsIntroduction to Material Science, Interdisciplinary nature, Structure of nanomaterials, Length scales, de-Broglie wavelength & exciton Bohr radius, Foundations of Quantum Mechanics: wave function, Schrödinger equation, uncertainty principle, quantum wells, quantum wires, quantum dots, articles.
Unit 2 Nanomaterials: Synthesis, Properties
Size effect and properties of Nanoparticles - Particle size
- Particle shape - Particle density, Specific surface area and pore - Composite structure, Crystal structure
- Functionality of nanostructures and their characteristic evaluation - Optical properties - Catalytic property;
Synthesis - Methods and Strategies, Top-down and bottom-up approaches, Chemical vapor deposition,
Laser ablation, Electric-arc, Sol-Gel Processing, Lithography - Surface modification of inorganic nanoparticles by organic functional groups.

Unit 3 Surface Science and Characterization of Nanomaterials

Unit 4 Nanotechnology: Applications and Devices

Unit 5 Environmental Issues in Nanotechnology
Nanoparticles and environment - Nanoparticles in atmosphere - Ground water, exhaust gases - wastewater and Indoor environments; Safety of nanoparticles - Problems caused by nanoparticles, Safety assessment for the nanoparticles; Removal of nanoparticles.

TEXTBOOKS:

REFERENCES:
History of the use of natural products as therapeutic agents, medicinal plants, active principle, Isolation methods of alkaloids, terpenes, antioxidants, natural oils from plants

Unit 5 Medicinal agents
Medicinal agents belonging to alkaloids, steroids, polypeptides, modified nucleic acid bases, sulphonamide and sulpha drugs, antibacterial drugs - sulpha drugs, substituted sulphonamides, anticonvulsants, anticoagulants, antiamebic agents, antihelmentic agents, anti-malarial agents, diuretics and cardiovascular agents, medicinal agents affecting CNS, analgesics, antipyretics, antiseptics and disinfectants, Histamine and anti-histaminic agents. Infectious and non infectious diseases (malaria, AIDS, Cancer) introduction, mechanism of action types of cure,

TEXTBOOKS:

REFERENCES
2. V.K.Ahluwalia, Lalita S.Kumar and Sanjiv Kumar, ‘Chemistry of Natural Products’, Ane Books India.

18CHY638 SUPRAMOLECULAR CHEMISTRY 3 0 0 3

Unit 1 Introduction to Supramolecular Chemistry
From molecular to supramolecular chemistry: Factors leading to strong binding, hydrogen bonding and stacking interactions, Bottom-up approach, Top-Down Approach, Energy and Signals Semiochemistry, photo switching devices, electro switching devices, mechanical switching processes,

Unit 2 Processing of Energy and Signals by Molecular and Supramolecular system
Fundamental principles of photo induced electron and energy transfer, Molecular electronics, Molecular photonics, Molecular Chemionics, Molecular electro photonics, Molecular Photochemionics.

Unit 3 Molecular Recognition

Unit 4 Electrochemistry of Supramolecular Systems
Electroluminescent systems as sensors and devices, Redox controlled molecular switches, Biohybrid electrochemical devices, Dendrimers as multielectron storage devices, Redox-active Metal- Polypyridinedendrimers as light harvesting antennae.

Unit 5 Molecular Scale Mechanical Devices
Introduction to mechanical devices, Spontaneous mechanical like motions, Allosteric movements, Tweezers and Harpoons, A natural proton pump, Twisters, Tweezers, Threading-Dethreading movements, Ring switching processes in Rotaxanes and Catenanes, Molecular valves, Molecular Muscles.

TEXTBOOKS:

REFERENCES:

18CHY639 Nanomaterials for Biomedical Applications 3 0 0 3

Unit 1: Introduction to Nanomaterials: Size dependence of properties – Surface to volume ratio and Quantum confinement. Microscopic techniques to study nano structures - SEM, AFM – TEM and STM. Spectroscopic techniques to characterize nanostructures - Raman, XPS, Auger, EDAX.

Unit 2: Synthetic approaches: Colloidal, Self-Assembly (Self assembled monolayers-SAMs) and electrostatic self-assembly, electrochemical methods (cathodic and anodic processes), sol-gel, Langmuir-Blodgett (LB) technique, chemical vapour deposition, plasma arcing and ball milling, lithography.

Unit 3: Electrical, optical, mechanical, chemical and magnetic properties of nanomaterials. Surface Plasmon resonance – Fluorescence Resonance energy transfer (FRET).

Unit 4: Carbon Clusters: Synthesis, properties and biomedical applications of Fullerenes, Carbon nanotubes and Graphenes. Quantum Dots, wells and wires (metallic and semiconducting) - Preparation, properties and biomedical applications. Dendrimeric structures and their applications.

REFERENCES:

18CHY640 INDUSTRIAL METAL FINISHING PROCESSES 3 0 0 3

Unit 1 Background Theory: Review of reversible and irreversible processes - electrodes, indicator and reference - Nernst and Butler-Vohmer equation - phenomenon of polarization - factors influencing - Tafel experiment and Tafel plot - Significance.
Unit 2 Electrodeposition: Industrial plating of copper-nickel (dull and bright) - chromium on mild steel – operating conditions and sequence – pre-treatment processes - plant layout – electroplating of zinc on MS and post plating chromating, yellow and blue passivation processes – decorative plating of silver and gold on non-ferrous metals – brief discussion on nano plating of metals and micro structure of the deposition.

Properties of deposits: Tests for adhesion, hardness, thickness, uniformity and corrosion resistance of the electro deposits.

Electroless deposition: Nickel, copper, gold on metal components – bath composition and operating conditions - immersion plating - plating on plastics – pre-treatment processes – long duration plating – electroforming, operating conditions and sequence.

Nano anodizing of titanium, aluminium and tantalum – application to sensor field.

Plasma electrolytic oxidation: power supply requirements – baths used – process sequence for aluminium, magnesium and titanium – properties of the coating and industrial applications.

Unit 4 Electropolishing: Mechanism of electropolishing – electropolishing of ferrous and non-ferrous metals – industrial baths used – operating conditions and sequence - industrial applications.

Unit 5 Electrochemical etching: Etching of ferrous and non-ferrous metals – special properties of matt and satin finish – DC and AC processes – operating conditions and sequence. Special Topics: Electrochemical and chemical metal colouring of ferrous and non-ferrous metals.

TEXTBOOK:

REFERENCES:

18CHY641 Biosensors : Fundamentals and Applications 3 0 0

Unit 1: Introduction to biosensor – classification based on the signal transduction and biorecognition element. Enzymatic and non-enzymatic sensors, DNA and protein based sensors-immunosensors.

Unit 4: Optical and electrochemical sensors for glucose, vitamins, cholesterol, dopamine, nitric oxide, nitrates, and pesticides. Biocompatibility of sensors.

Unit 5: Biochips and wearable devices: lab-on-a-chip - fabrication of microfluidics- lithography, wearable sensors, epidermal electronic system, lab-on-skin-devices.

REFERENCES

18CHY642 COMPUTATIONAL CHEMISTRY 3003

Unit 1 - Introduction

Introduction to computational chemistry (molecular modelling), questions commonly investigated computationally, principle and application of methods (tools) of computational chemistry - molecular mechanics, ab initio method, semiempirical methods, density functional theory and molecular dynamics, STOs, GTOs, basis sets, specification of molecular geometry using Cartesian coordinates and internal coordinates, Z-matrix, Z-matrix of simple molecules (water, ethanol), potential energy surface (PES), potential energy surface of diatomic molecules and triatomic molecules (H₂O and HOF) - hypersurface and process of “slicing”, stationary points on a potential energy surface - potential energy surface of the isomerization reaction of ozone to isoozone, stationary points (ozone, isoozone and transition state), intrinsic reaction coordinate, minimum, relative minimum, saddle-shaped surface, saddle point, higher-order saddle point and mathematical treatment of stationary points, Born-Oppenheimer approximation and its significance and frozen-nuclei energy.

Unit 2 - Molecular Mechanics

Introduction to molecular mechanics, forcefield, developing a force field - expression for potential energy of a molecule, bond stretching term, angle bending term, torsional term and...
nonbonded interaction term, parameterizing a forcefield, parameterizing bond stretching term, angle bending term, torsional term and nonbonded interaction term, calculation using forcefield, compare the energies of two 2, 2, 3, 3-tetramethylbutane geometries, illustration of application (use) of molecular mechanics, calculation of geometries and energies of small-sized and medium-sized molecules, polymers and transition states (transition state for the Diels-Alder reaction of butadiene with ethene to form cyclohexene), in organic synthesis for predicting the more suitable path for carrying out the synthesis and calculation of normal-mode vibrational frequencies for characterizing a species as a minimum or a transition state or higher-order saddle point, for obtaining zero-point energies to correct frozen-nuclei energies and for interpreting or predicting IR spectra, strength (merit) and weakness (demerit) of molecular mechanics.

Unit 3 - Semiempirical methods - Part 1

Introduction to semiempirical (SE) methods, Simple Huckel Method (SHM) - theory - expression for calculating energy of a molecular species, expression for molecular wave function based on LCAO approximation, secular equations and the single matrix equation, H, C, S and ε matrices and their interpretation, the values of H_{ij} as zero, coulomb integral α and bond integral β and their physical significance, the H matrix in terms of α, β and zero for ethene system (ethene neutral molecule, ethene radical cation and ethene radical anion), propenyl system (propenyl cation, propenyl neutral radical and propenyl anion) and cyclobutadiene system (square cyclobutadiene dication, square cyclobutadiene neutral molecule and square cyclobutadiene dianion), the H matrix in terms of zero, $\alpha = 0$ and $\beta = -1$ for ethene systems (ethene neutral molecule, ethene radical cation and ethene radical anion), propenyl system (propenyl cation, propenyl neutral radical and propenyl anion) and cyclobutadiene system (square cyclobutadiene dication, square cyclobutadiene neutral molecule and square cyclobutadiene dianion), result of diagonalization of the H matrices written for ethene system, propenyl system and cyclobutadiene system, molecular orbital energy level diagrams and expressions for energy and molecular wave functions for ethene system, propenyl system and cyclobutadiene system based on the result of diagonalization of the H matrices, and molecular orbital energy level diagrams for ethene system, propenyl system and cyclobutadiene system showing ground state and excited state electronic configurations.

Unit 4 - Semiempirical methods - Part 2

Application of SHM - nodal properties of molecular orbitals and Woodward-Hoffmann orbital symmetry rule, stability towards oxidation and reduction of various species in ethene system, propenyl system and cyclobutadiene system, geometry of cyclobutadiene molecule as predicted by SHM and its Jahn-Teller distortion, aromaticity and Hückel’s $(4n + 2)$ π electron rule, and calculation of resonance (stabilizing) energy, bond order and atomic charges of various species in ethene system, propenyl system and cyclobutadiene system, strength of SHM, weakness of SHM (detailed explanation) - basis set is limited to p orbitals (p_z orbitals), it treats only π electrons, and the overlap integrals, Fock matrix elements, electron spin and electron-electron repulsion are not calculated/accounted properly, Extended Huckel Method (EHM) - minimal valence basis set, calculation of Fock matrix elements, and calculation of overlap integrals by Lowdin orthogonalization, EHM procedure, EHM calculation on protonated helium molecule, application of EHM - an overall idea, strength and weakness of EHM, SCF SE methods - Pariser-Parr-Pople (PPP) method and Complete Neglect of Differential Overlap (CNDO) method - basic principle (an exhaustive treatment is not expected).

Unit 5 - Density Functional theory and ab initio method

(An exhaustive treatment is not expected)
Introduction to Density Functional theory and calculations, Kohn-Sham approach - the first and the second Hohenberg-Kohn theorems, introduction to ab initio method and calculation, basis sets for H, He and first, second and third row elements used in ab initio calculations - STO-3G, 3-21G, 3-21G(*) and 6-31G*, these basis sets for a few molecular species (water, methane and carbene), basic principles of ab initio method (an idea only).

Text Book

1. Computational Chemistry-Introduction to the Theory and Applications of Molecular and Quantum Mechanics - Errol Lewars

18CHY643 Sustainable Chemical Science 3 0 0 3

Unit 1 Green Chemistry and Sustainability

History of green chemistry, Chemical composition of the, environment (Air, water & soil- Role of organic and inorganic molecules in pollution), the twelve principles of green chemistry (detailed description with examples), green chemistry as an expression of environmental ethics (Thrift Chemistry), the concept of sustainability, from green to sustainable chemistry, sustainable use of chemical feedstock, water and energy, quantifying greenness of a chemical reaction, green chemistry metrics- mass based, energy and environmental metrics, designing greener process, life cycle assessment (introduction and scope), Green toxicology- the need, principles of toxicology, Disposition of Toxicants in Organisms, Non-Organ System Toxicity, Mechanistic Toxicology, Quantitative Structure–Activity Relationships, (Environmental Toxicology-Persistence and bioaccumulation), Non-Cancer risk assessment, Cancer risk assessment, stakeholders in sustainable policy implementation.

Unit 2Chemistry in water

Definition and attributes of a green solvent, the principle and reasons for use of water in green chemistry- hydrophobicity- cyclodextrin chemistry, Lewis acids in aqueous media, Michael addition in water using triflates, green processes with base in water, green oxidations and reduction in water, on water conditions, use of water in microwave and ultrasonic technology.

Unit 3 Green solvents

Ionic liquids as green solvents- definition and notation- properties, synthesis and use in organic reactions, oxidation, oxidative carbonylation of aniline, Friedel–crafts reaction, Michael addition, Fischer Indole synthesis, Benzoin condensation, dimethyl carbonates synthesis in ionic liquids.

Properties and application in organic transformation of green solvents like polyethylene glycol, glycerol, cyclopentyl methyl ether, 2-methylytetrahydro furan, Perfluorinated (Fluorous) Solvents- FluorousBiphase Concept and dimethyl carbonate.

Unit 4 Green Chemistry and Catalysis

Importance of catalysis, turn over number and frequency, the basis of catalysis-kinetic phenomenon, basics of homogeneous, heterogeneous and biocatalysis, sabatier’s principle, catalyst -deactivation, sintering, thermal degradation, inhibition and poisoning,
catalyst promoters, modifiers, supported catalysts and reagents for green chemistry - heterogeneous reactions for green chemistry, preparation of solid catalyst-slurry and co-precipitation, impregnation, hydrothermal synthesis- drying, calcination, activation and forming, selecting the right support, catalyst characterization- surface characterization methods, temperature programmed techniques, spectroscopy and microscopy. Common mechanism in enzyme catalysis immobilized enzymes, developing biocatalyst- rational design and directed evolution, non-enzymatic biocatalysts.

Unit 5 Green Chemistry Technologies and Alternate Energy Sources

Design for Energy Efficiency, Photochemical Reactions Advantages of and Challenges Faced by Photochemical Processes (Examples)

Microwaves as energy source in chemistry - properties of microwaves, microwave heating (Effects), Approaches to Microwave-assisted Organic Chemistry- solvent free methods, MORE chemistry, continuous microwave reactor (CMR)-microwave batch reactor (MBR), examples of organic transformations.

Sonochemistry and Green Chemistry-Theoretical Basis- Cavitation Inception, Nucleation-Bubble Dynamics- examples of organic transformations, Sono-chemical synthesis of nano-structured materials,

Electrochemical Synthesis- materials manufactured using the process, organic electrosynthesis- 3-bromothiophen from thiophene

Reference

5. Handbook of Green Chemistry, Vol5 Green Solvents- Reactions in Water, PualT Anastas, Chao Jun Li
Industrial Sustainable Chemistry- Managing Intraorganizational Sustainability, Managing Horizontal Interorganizational Sustainability, Managing Vertical Interorganizational Sustainability

Integrated Pollution Prevention and Control- Best Available Techniques reference documents (BREFs), From Industrial Emissions Directive (IED) to Voluntary Systems, Policy Drivers for Sustainable Chemistry (Transition Concept), Development of a CSR Management System Framework

Sustainability Assessment Methods and Tools- Sustainability Assessment Framework, Impact Indicators and Assessment Methodologies, Environmental Impact Assessment, Economic Impact Assessment, Social Impact Indicators,

Understanding Industrial Symbiosis-Cluster Management

Sustainability of Logistics in the Chemical Sector, Basic Principles of Chemical Leasing (ChL), Differences between Chemical Leasing and Other Alternative Business Models for Chemicals, Sustainable Chemical Warehousing- Risk Management in the Chemical Warehouse, F³-Factory concept, Indian energy security scenarios (IEWS) 2047.

Unit 2 Process Intensification I

Moving from Batch to Continuous Processing, Spinning Disc Reactor (Design, Operating Features and Characteristics of SDRs- Green Synthesis of Nanoparticles using SDR),

Micro Process Technology-Transport Intensification, Chemical Intensification, Process Design Intensification

Oscillatory Baffled Reactors- Design and operations

Monolith Reactors for Intensified Processing- Design, Hydrodynamics, Advantages and Applications- Cleaner Production of Fuels and Removal of Toxic Emissions

Cavitational Reactors, Mechanism, Reactor Configurations, Transesterification of Vegetable Oils Using Alcohol using Cavitation

Unit 2 Process Intensification II

Membrane Technology- Definitions, functions and operations, Biocatalytic Membrane Reactors (Entrapment, Gelification and Chemical Attachment), Biofuel Production Using Enzymatic Transesterification

Membrane Technology in Metal Ion Removal from Waste Water, Membrane Operations for the Production of Optically Pure Enantiomers,

Integrated Membrane Processes for Water Desalination

Reactive Distillation Technology and Reactive Extraction Technology- Principles, control design and applications

Reactive Absorption Technology in Carbon Dioxide Capture, removal of Nitrogen Oxides, Desulfurization, and in Sulfuric and Nitric Acid production

Unit 4 Computer Applications in Catalytic Research

Computers as research tools in catalysis- a brief overview, a short overview of modelling methods, Data-mining methods in catalysis (PCA, PLS and Artificial Neural networks)

Unit 5 Successful Example of Sustainable Industrial Chemistry
Detailed Process Chemistry of the current technologies and routes for the following chemicals in industry

Industrial Propene Oxide Production (CHPO (Chlorohydrin) Technology, PO/TBA Technology, PO/SM Technology, PO-only Routes)

Synthesis of Adipic Acid (Current Technologies for AA Production- Two-Step Transformation of Cyclohexane, Alternatives for AA Production)

Ecofining- New Process for Green Diesel Production from Vegetable Oil

Direct Oxidation of Benzene to Phenol, Friedel–Crafts Acylation of Aromatic Ethers Using Zeolites, Sustainable Chemistry in the Production of Nicotinates

Homogeneous catalysis: The Shell higher olefin process (SHOP) and Du Pont synthesis of Adiponitrile

Heterogeneous catalysis: The BP AVADA ethyl acetate process

Reference

18CHY681 ORGANIC QUALITATIVE ANALYSIS LAB. 0062

1. Separation of binary mixtures

Includes separation, preliminary investigations, determinations of saturation/unsaturation, detection of elements by Lassaigne’s test, functional group identification, derivative preparation, determination of melting points of the derivatives and calculation of Rf values from TLC

The following mixtures can be given:
(a) Acid and hydrocarbon
(b) Phenol and aldehyde
(c) Phenol and acid
(d) Phenol and amine
(e) Acid and ester
(f) Halo compound and aldehyde
(g) Acid and aldehyde
(h) Amine and aldehyde
(i) Amine and ketone
(j) Alcohol and hydrocarbon
2. Thin layer chromatography to determine Rf values of compounds
 (a) 2-nitroaniline
 (b) 4-nitroaniline
 (c) Cinnamic acid and 2-nitroaniline
 (d) Acetophenone
 (e) Ethyl benzoate

3. Simple column chromatography to separate the components of binary mixtures
 (a) Hydrocarbon and ester
 (b) Aldehyde and amine

REFERENCES:
Introduction to problem solving: algorithm development and flowchart. Introduction to Computer terminologies and computer languages. C Fundamentals: structure of C program: directives, functions, statements, printing strings, comments; compilation and execution, Programming errors and debugging. Variables and assignment, reading input; data types, constants, identifiers, keywords, operators - arithmetic, logical, relational, assignment; expressions - precedence and associativity, type cast-implicit and explicit; selection statements:- if, if else, nested if, if else ladder, switch. Case.
Iterative structures: entry controlled and exit controlled loop, exiting from a loop: break, continue, goto; nested loops. Functions: library functions, user defined functions: defining and calling functions, function declaration, passing arguments to a function, returning values from function. Storage classes - auto, extern, static, register variables, scope of a variable. Recursion. Number systems: binary, octal and hexadecimal. Bitwise operators and enumeration.

TEXTBOOK:

REFERENCE:

18CSA116 ADVANCED COMPUTER PROGRAMMING 3 0 0 3

Unit 1
Structures: structures variables - declaration, bit fields, initialization and operation on structures, typedef, nested arrays and structures: arrays in structures, nested structures, arrays of structures.

Unit 2

Unit 3
Pointers and structures, structures and functions: passing structure as argument and returning structure from functions, self-referential structure, unions.

Unit 4
Files - file pointers, standard streams and redirection, text files, binary files, file operations: open, mode, close; Input and output - character I/O, line I/O, formatted I/O. Random file access, Command line arguments.

Unit 5
Preprocessor – Macros. User defined libraries and headers, introduction to the graphics library.
TEXTBOOK:

REFERENCE:

18CSA180 PROBLEM SOLVING AND COMPUTER PROGRAMMING LAB 0 0 2 1

Basic Linux commands, programs using input/output statements, operators, control structures and loops. Programs using functions and recursions. Programs using numeric one-dimensional array, two-dimensional array. Programs using strings, string handling functions and string arrays. Programs using passing arrays and strings to functions.

18CSA181 ADVANCED COMPUTER PROGRAMMING LAB 0 0 2 1

Programs to demonstrate functions call by reference and returning values by reference. Programs using pointer arithmetic operations and handling pointers. Programs to demonstrate dynamic memory allocation and de-allocation. Programs to show structure and union operations. Programs using files, command line arguments and macros. Programs using user defined libraries and graphics library.

18MAT105 INTRODUCTION TO CALCULUS AND MATRIX THEORY 3 1 0 4

Unit 1
Calculus on a Single variable (Based on Textbook 1) Graphs Functions and their graphs. Shifting and scaling of graphs. Limit and Continuity - Limit of Functions, One sided limits and limits at infinity.

Unit 2
Continuous Functions, Discontinuities. Applications of Derivative - Extreme values of functions, Concavity and Curve Sketching.

Unit 3
Integration - Definite Integrals, Properties of definite integrals, Integration techniques. Fundamental theorem of Calculus. Numerical Methods - Trapezoidal and Simpson’s rules. (Sections: 1.3, 1.5, 2.3, 2.4, 2.5, 2.6, 4.1, 4.4, 5.3, 5.4, 8.7)

Unit 4
Matrix Eigen Value problems (Based on Textbook 2) Linear Independence and rank of a matrix, Eigen values and Eigen vectors- Definitions and properties.

Unit 5
Some applications of eigenvalue problems, Symmetric, Skew Symmetric and Orthogonal matrices, Eigenbases, Diagonalization, Quadratic forms. (Sections: 8.1-8.4) Numerical Methods - Power Method for Eigen Values and Eigen Vectors. (Sections: 20.8)

TEXTBOOKS:

REFERENCE BOOKS:
Unit 1
Ordinary Differential Equations: First Order Differential Equations - Basic concepts, Exact ODEs and Integrating factor, Orthogonal trajectories. (Sections 1.1, 1.4, 1.6)

Unit 2
Second Order Differential Equations - Review of linear homogeneous ODE of second order with constant coefficients. Euler-Cauchy Equations. Solution of second order linear non-homogeneous ODE by method of Undetermined Coefficients and by method of Variation of Parameters. (Sections 2.1, 2.2, 2.5, 2.7, 2.10)

Unit 3
System of ODEs - Homogeneous and Non-homogeneous systems with Constant Coefficients. (Sections 4.1, 4.2, 4.6) Numerical Methods - Euler’s methods, Runge-Kutta method. (Sec: 21.1)

Unit 4

Unit 5
Line Integral, Line Integrals Independent of Path, Double integrals, Green’s Theorem in the Plane, Surfaces for Surface Integrals, Surface Integrals, Triple Integrals – Gauss Divergence Theorem, Stoke’s Theorem. (Sections: 10.1 - 10.7 and 10.9).

TEXTBOOK:

REFERENCE BOOKS:

18MAT207 INTRODUCTION TO PROBABILITY AND STATISTICS

Unit 1

Unit 2
Binomial, Poisson, Geometric, Uniform, Exponential. Normal distribution functions (moment generating function, mean, variance and simple problems) – Chebyshev’s theorem. Correlation and Regression: Scatter diagram, simple correlation and simple regression for data.

Unit 4
Testing of Hypothesis: Central limit theorem, large sample tests for mean, variance and proportions - small sample tests for mean and variances – tests based on Chi-square distribution (tests for independence of attributes and goodness-of-fit).
Unit 5

TEXTBOOKS:

REFERENCE BOOKS:

18MAT219 INTEGRAL TRANSFORMS 3 1 0 4

Unit 1

Unit 2
Differentiation and Integration of Transforms. Convolution, Integral Equations, Partial Fractions, Differential Equations, Systems of Differential Equations. (Sections: 6.1 to 6.7)

Unit 3

Unit 4

Unit 5
Applications of Partial Differential Equations: Basic Concepts, Modeling; VibratingString, Wave Equation, Separation of Variables, Use of Fourier Series, Heat Equation; Solution by Fourier Series. (Sections: 12.1, 12.2, 12.3, 12.4)

TEXTBOOK:

REFERENCE BOOKS:

18PHY103 MECHANICS 3 1 0 4

Unit 1 Motion
Motion in 1D; vectors, motion in 2D & 3D, projectile and uniform circular motion; relative motion and relative velocity.

Unit 2 Forces and dynamics
Force, mass, Newton’s laws, inertial mass, examples of forces, free body diagram analysis for simple applications; friction and contact forces, drag force and terminal speed, uniform circular motion.
Unit 3 Work, Energy, Collisions
Work, kinetic energy, work-kinetic energy theorem, work done by gravitational and spring forces, power; Work and potential energy, conservative forces, conservation of mechanical energy, potential energy curve; Center of mass, Newton’s law for system of particles, linear momentum and its conservation, Impulse forces, collisions - elastic and inelastic collisions in 1D and 2D; systems with variable mass - rockets.

Unit 4 Rotational Motion
Rotational variables, linear and angular variables, rotational kinetic energy, rotational inertia; torque, Newton’s law for rotation, work, rolling – combined translation and rotation, angular momentum, Newton’s law in angular form, system of particles, conservation of angular momentum.

Unit 5 Oscillatory motion
Small oscillations in physical systems; determination of frequency; simple harmonic motion; damped oscillations, resonance.

TEXTBOOK:
Halliday, Resnick, and Walker, Fundamentals of Physics, 8th Extended Ed., Wiley Indian Reprint, 2008, Chap. 1-12, 15

REFERENCES:
1. Young and Freedman, University Physics, 11th Ed, Dorling Kindersley India, 2006

18PHY114 ELECTRICITY AND MAGNETISM 3 1 0 4

Unit 1 Electric forces and fields
Electric forces, charges, conservation of charge, superposition of electric forces; electric fields, calculation of electric fields of static discrete and continuous charge distributions; Gauss’ law and determination of electric fields of simple symmetric charge distributions.

Unit 2 Electric potential and Capacitors
Electrical potential energy and electric potential of discrete and continuous distributions of charges; calculating electric field from potential; potential energy of system of point charges; capacitors and dielectrics.

Unit 3 Magnetostatics
Force due to magnetic fields, Hall effect, circular and helical orbits, magnetic force on a current carrying wire, torque on a current loop, magnetic dipole moment; calculation of magnetic field from current sources using Biot-Savart’s law and Ampere’s law; solenoids and toroids.

Unit 4 Changing magnetic fields
Faraday’s law, Electromagnetic Induction, Self & mutual inductance; Magnetism in matter and Maxwell’s equations.

Unit 5 DC and AC Circuits
Electric current, resistance, resistivity, microscopic view; DC circuits involving resistance and capacitance; AC Circuits, RLC circuits, transformers.

TEXTBOOK:

REFERENCES:
2. Young and Freedman, University Physics, 11th Ed, Dorling Kindersley India, 2006
List of experiments:
1. Surface Tension – Capillary Rise Method.
2. Coefficient of Viscosity - Stoke’s Method.
3. The Torsion Pendulum.
 b. The Rigidity Modules of the Material of Wire.
7. Laser - Wave length of Laser beam.
8. Laser - Slit Width of the given slit.

List of experiments:
1. Lee’s disc – Thermal Conductivity of a bad conductor.
2. Solar cell characteristics.
3. Potentio meter – Comparison of emfs.
5. Field along the axis of a coil.
8. Newton’s rings.
9. Meter bridge - Resistance measurement.
10. Ref. index of a Transport bar.
11. Elective field distribution.

Unit 1
Voltage and current - resistors, voltage dividers, voltage and current sources, Thevenin’s theorem, sinusoidal signals, signal amplitudes and decibels, other signals, logic levels, signal sources.

Unit 2
Conduction in metals, semiconductors and insulators, intrinsic semiconductors, n and p materials, conduction by drift and diffusion, The p-n junction, Fermi level of pnp junction, diode equation, Hall effect, diode characteristics, capacitance of a p-n junction, rectification, rectifier configurations for power supplies, circuit applications of a diode as a switch, clipping, clamping, different types of diodes - Zener diodes, LEDs, diode lasers, photodiodes, etc.

Unit 3
Transistors - npn and pnp, transistor characteristics - CB, CE and CC configurations, relation between a, b and g, transistor switch, transistor biasing. Feedback circuits. Transistor action, emitter follower, Transistor applications as amplifier. RC coupled amplifier.

Unit 4
Transistor as an oscillator, FET, JFET, MOSFET, etc. Operational amplifiers; differential amplifier, inverting and non-inverting amplifiers etc. Op-amp applications-integrator, differentiator, adder etc. ICs – examples.

Unit 5
Digital electronics: Digital versus analog, logic gates, truth table, discrete circuits for gates, logic identities, minimization and Karnaugh maps.

TEXTBOOK:
REFERENCES:
3. Horowitz and Hill, The art of Electronics (Cambridge University press)

18PHY214 WAVES AND OPTICS 3 1 0 4

Unit 1

Unit 2
Wavemotion: Simple Harmonic Oscillation (SHO), differential equation for SHO and its general solution, super position of two or more SHOs, Damped and forced oscillators, resonance. Wave equation, travelling and standing waves in one dimension, energy density and energy transmission in waves, Group velocity and phase velocity.

Unit 3
Interference: Wave nature of light, Spatial and temporal coherence, coherent sources, interference of light by division of wave front: Fresnel’s biprism, interference of light by division of amplitude: interference in thin films, fringes of equal inclination, airwedge, Newton’s rings and Michelson’s interferometer. Multiple beam Interference - Fabry-Perot interferometer, multilayer thinfilms: AR and HR coatings. Diffraction: Fresnel and fraunhoffer diffraction, diffraction grating, Rayleigh criterion and resolving power.

Polarisation: linear, circular and Elliptic polarization, double refraction and optical rotation. Propagation of light through matter, dispersion and absorption, Nonlinear optics, second harmonic generation, integrated optics (qualitative only).

Unit 5
Fiber optics: Introduction to optical fiber, the numerical aperture, coherent bundle, pulse dispersion in step index fiber, graded index fiber, single mode fiber, multimode fiber, fiber optic sensors - examples - fiber optic communication (qualitative), Advantages of fiber optic communication system.

REFERENCES: