AMRITA SCHOOL OF PHARMACY

Program

Pharm D
Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAMME OUTCOMES</td>
<td>3</td>
</tr>
<tr>
<td>PROGRAMME SPECIFIC OUTCOMES</td>
<td>4</td>
</tr>
<tr>
<td>CURRICULUM STRUCTURE</td>
<td>16-21</td>
</tr>
<tr>
<td>COURSE OBJECTIVES</td>
<td>28-96</td>
</tr>
<tr>
<td>COURSE OUTCOMES</td>
<td>6-15</td>
</tr>
<tr>
<td>EVALUATION SCHEME AND GRADING SYSTEM</td>
<td>22-27</td>
</tr>
<tr>
<td>SYLLABUS</td>
<td>28-96</td>
</tr>
</tbody>
</table>
PROGRAMME OUTCOMES

1. **Pharmacy Knowledge:** Possess knowledge and comprehension of the core and basic knowledge associated with the profession of pharmacy, including biomedical sciences; pharmaceutical sciences; behavioral, social, and administrative pharmacy sciences; and manufacturing practices.

2. **Planning Abilities:** Demonstrate effective planning abilities including time management, resource management, delegation skills and organizational skills. Develop and implement plans and organize work to meet deadlines.

3. **Problem analysis:** Utilize the principles of scientific enquiry, thinking analytically, clearly and critically, while solving problems and making decisions during daily practice. Find, analyze, evaluate and apply information systematically and shall make defensible decisions.

4. **Modern tool usage:** Learn, select, and apply appropriate methods and procedures, resources, and modern pharmacy-related computing tools with an understanding of the limitations.

5. **Leadership skills:** Understand and consider the human reaction to change, motivation issues, leadership and team-building when planning changes required for fulfillment of practice, professional and societal responsibilities. Assume participatory roles as responsible citizens or leadership roles when appropriate to facilitate improvement in health and wellbeing.

6. **Professional Identity:** Understand, analyze and communicate the value of their professional roles in society (e.g. health care professionals, promoters of health, educators, managers, employers, employees).

7. **Pharmaceutical Ethics:** Honour personal values and apply ethical principles in professional and social contexts. Demonstrate behavior that recognizes cultural and personal variability in values, communication and lifestyles. Use ethical frameworks; apply ethical principles while making decisions and take responsibility for the outcomes associated with the decisions.
8. **Communication:** Communicate effectively with the pharmacy community and with society at large, such as, being able to comprehend and write effective reports, make effective presentations and documentation, and give and receive clear instructions.

9. **The Pharmacist and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety and legal issues and the consequent responsibilities relevant to the professional pharmacy practice.

10. **Environment and sustainability:** Understand the impact of the professional pharmacy solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

11. **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Self assess and use feedback effectively from others to identify learning needs and to satisfy these needs on an ongoing basis.

Programme Specific Outcome

1. To develop competent pharmacy graduates by structured teaching-learning processes through dedicated and devoted faculty.

2. To develop in-depth knowledge of medications that is integrated with a foundational understanding of the biomedical, pharmaceutical, socio-behavioral and clinical sciences.

3. To develop responsible clinical pharmacy professionalstopractice in collaboration with other health care practitioners for the purpose of improving patient care.

4. To promote professionalism, team spirit, social and ethical commitment to boost leadership role assisting improvement in healthcare sector.

5. To emphasize social responsibility in delegating safe, accurate, rational and cost-effective use of medications.

6. To develop skills in identifying rational, reasonable and practical solutions to drug-related problems for the wellbeing of the patients.

7. To inspire the graduates for higher education, research, entrepreneurship and life-long learning in the context of technological advancement.
AMRITA VISHWA VIDYAPEETHAM is a multi-campus, multi-disciplinary research academia that is accredited ‘A’ by NAAC and is ranked as one of the best research institutions in India. Amrita is spread across five campuses in three states of India - Kerala, Tamil Nadu and Karnataka, with the headquarters at Ettimadai, Coimbatore, Tamil Nadu. The institution is managed by the Mata Amritanandamayi Math.

AMRITA SCHOOL OF PHARMACY is a constituent unit of AMRITA VISHWA VIDYAPEETHAM Deemed University established under Section 3 of UGC Act 1956. It is located in the Health Sciences Campus of the University at Kochi, Kerala, India. Amrita School of Pharmacy offers training for one of the most sought-after professions. The School’s commitment to excellence in healthcare is inline with the overall objective of the Kochi - based Health Sciences campus of the University.

Amrita School of Pharmacy is recognized by Pharmacy Council of India (PCI) and All India Council for Technical Education (AICTE). The School and the Institution are accredited by The National Assessment and Accreditation Council (NAAC) with ‘A’ Grade.

The School of Pharmacy strives not only to provide quality education in pharmaceutical sciences but also to establish itself in research and serve as an ideal platform for the overall development of highly competent pharmacy professionals. The School maintains an exemplary clinical practice and conducts community outreach programmes that address the needs of the society at large.

VISION

todevelopasacenterofexcellenceinPharmacyeducationandresearchandbecomeoneamong the distinguished pharmacy institutions in the country. It envisions to establish effective collaborations with Pharma industries and international pharmacy institutions for mutual benefits.

MISSION

To provide high quality value-based education with high emphasis on research and mould competent and socially committed pharmacy professionals capable of practicing and managing the future of pharmacy profession in the country and abroad.
Programmes Offered:

- B.Pharm (4 years – 8semesters)
- M.Pharm (2 years – 4semesters)
 - Pharmacy Practice
 - Pharmaceutics
 - Pharmaceutical Chemistry
 - Pharmacology
- Pharm. D Regular (5 years plus 1 year Internship)
- Pharm. D Post Baccalaureate (2 years plus 1 year Internship)
- Ph.D in Pharmaceutical Sciences

Doctor of Pharmacy (Pharm. D)

Amrita School of Pharmacy started offering the six year integrated Pharm. D. (Regular) and three year Pharm. D. Post Baccalaureate programmes from 2010, taking full advantage of its in house hospital and the associated healthcare services. The two programmes were the first of their kind in the state of Kerala, whereas it was introduced in the country in 2008.

Pharm. D regulations 2008 framed by Pharmacy Council of India under section 10 of the Pharmacy Act, 1948 (8 of 1948) has been adopted by Amrita School of Pharmacy from 2010 onwards.

REGULATIONS (Pharm D)

Course Outcomes (COs)

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Code</th>
<th>Course Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUMAN ANATOMY AND PHYSIOLOGY</td>
<td>1.1</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Describe the structure (gross and histology) and functions of various organs of the human body.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Describe the various homeostatic mechanisms and their imbalances of various systems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Identify the various tissues and organs of the different systems of the human body.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Perform the hematological tests and also record blood pressure, heart rate, pulse and respiratory volumes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5. Appreciate coordinated working pattern of different organs of each system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6. Appreciate the interlinked mechanisms in the maintenance of</td>
</tr>
</tbody>
</table>
| **PHARMACEUTICS** | 1.2 | **The student should be able to**
CO 1. Know the formulation aspects of different dosage forms.
CO 2. Do different pharmaceutical calculation involved in formulation.
CO 3. Formulate different types of dosage forms.
CO 4. Appreciate the importance of good formulation for effectiveness. |
| **MEDICINAL BIOCHEMISTRY** | 1.3 | **The student should be able to**
CO 1. Understand the catalytic activity of enzymes and importance of isoenzymes in diagnosis of diseases.
CO 2. Know the metabolic process of biomolecules in health and illness (metabolic disorders).
CO 3. Understand the genetic organization of mammalian genome; protein synthesis; replication; mutation and repair mechanism.
CO 4. Know the biochemical principles of organ function tests of kidney, liver and endocrine gland.
CO 5. Do the qualitative analysis and determination of biomolecules in the body fluids. |
| **PHARMACEUTICAL ORGANIC CHEMISTRY** | 1.4 | **The student should be able to**
CO 1. Know the IUPAC/Common system of nomenclature of simple organic compounds belonging to different classes of organic compounds.
CO 2. Understand some important physical properties of organic compounds.
CO 3. Know free radical/ nucleophillic [alkyl/ acyl/ aryl]/electrophyllic substitution, free radical/ nucleophillic/electrophyllic addition, elimination, oxidation and reduction reactions with mechanism, orientation of the reaction, order of reactivity, stability of compounds.
CO 4. Understand some named organic reactions with mechanisms.
CO 5. Know the methods of preparation, test for purity, principle involved in the assay, important medicinal uses of... |
<table>
<thead>
<tr>
<th>Course</th>
<th>CO 1</th>
<th>CO 2</th>
<th>CO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHARMACEUTICAL INorganic Chemistry</td>
<td>The student should be able to</td>
<td>The student should be able to</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td>CO 1. Understand the principles and procedures of analysis of drugs</td>
<td>CO 2. Know the analysis of the inorganic pharmaceutics and their applications.</td>
<td>CO 3. Appreciate the importance of inorganic pharmaceuticals in preventing and curing the disease.</td>
</tr>
<tr>
<td></td>
<td>and also regarding the application of inorganic pharmaceuticals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 2. Know the analysis of the inorganic pharmaceutics and their applications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 3. Appreciate the importance of inorganic pharmaceuticals in preventing and curing the disease.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMEDIAL MATHEMATICS/BIOLOGY</td>
<td>The student should be able to</td>
<td>The student should be able to</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td>CO 1. Know Trignometry, Analytical geometry, Matrices, Determinant, Integration, Differential equation, Laplace transform and their applications.</td>
<td>CO 2. Solve the problems of different types by applying theory.</td>
<td>CO 3. Appreciate the important applications of mathematics in pharmacy.</td>
</tr>
<tr>
<td></td>
<td>CO 3. Appreciate the important applications of mathematics in pharmacy.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second year</td>
<td>The student should be able to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATHOPHYSIOLOGY</td>
<td>CO 1. Describe the etiology and pathogenesis of the selected disease states.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 2. Name the signs and symptoms of the diseases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 3. Mention the complications of the diseases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHARMACEUTICAL MICROBIOLOGY</td>
<td>The student should be able to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 1. Know the anatomy, identification, growth factors and sterilization of microorganisms.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 2. Know the mode of transmission of disease causing microorganism, symptoms of disease, and treatment aspect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 3. Do estimation of RNA and DNA and there by identifying the source.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 4. Do cultivation and identification of the microorganisms in the laboratory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 5. Do identification of diseases by performing the diagnostic tests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td>Co</td>
<td>The student should be able to</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PHARMACOGNOSY & PHYTOPHARMACEUTICALS</td>
<td>2.3</td>
<td>CO 1. Understand the basic principles of cultivation, collection and storage of crude drugs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Know the source, active constituents and uses of crude drugs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Appreciate the applications of primary and secondary metabolites of the plant.</td>
<td></td>
</tr>
<tr>
<td>PHARMACOLOGY – I</td>
<td>2.4</td>
<td>The student should be able to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Understand the pharmacological aspects of drugs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Handle and carry out the animal experiments.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Appreciate the importance of pharmacology subject as a basis of therapeutics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Correlate and apply the knowledge therapeutically.</td>
<td></td>
</tr>
<tr>
<td>COMMUNITY PHARMACY</td>
<td>2.5</td>
<td>The student should be able to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Know pharmaceutical care services.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Know the business and professional practice management skills in community pharmacies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Do patient counseling & provide health screening services to public in community pharmacy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Respond to minor ailments and provide appropriate medication.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5. Show empathy and sympathy to patients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6. Appreciate the concept of Rational drug therapy.</td>
<td></td>
</tr>
<tr>
<td>PHARMACOTHERAPEUTICS – I</td>
<td>2.6</td>
<td>The student should be able to understand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. The pathophysiology of selected disease states and the rationale for drug therapy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. The therapeutic approach to management of these diseases.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. The controversies in drug therapy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. The importance of preparation of individualized therapeutic</td>
<td></td>
</tr>
</tbody>
</table>
PHARMACOLOGY – II | 3.1 | The student should be able to
CO 1. Understand the pharmacological aspects of drugs.
CO 2. Carry out the animal experiments confidently.
CO 3. Appreciate the importance of pharmacology subject as a basis of therapeutics.
CO 4 Correlate and apply the knowledge therapeutically.

PHARMACEUTICAL ANALYSIS | 3.2 | The student should be able to
CO 1. Understand the principles of volumetric and electro chemical analysis
CO 2. Carry out various volumetric and electrochemical titrations
CO 3. Develop analytical skills
CO 4. Understand the interaction of matter with electromagnetic radiations and its applications in drug analysis
CO 5. Understand the chromatographic separation and analysis of drugs.
CO 6. Perform quantitative & qualitative analysis of drugs using plans based on diagnosis.

CO 5. Needs to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

CO 6. Describe the pathophysiology of selected disease states and explain the rationale for drug therapy.

CO 7. Summarize the therapeutic approach to management of these diseases including reference to the latest available evidence.

CO 8. Discuss the controversies in drug therapy.

CO 9. Discuss the preparation of individualized therapeutic plans based on diagnosis.

CO 10. Identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).
<table>
<thead>
<tr>
<th>COURSE</th>
<th>UNIT</th>
<th>CONTENT</th>
</tr>
</thead>
</table>
| PHARMACOTHERAPEUTICS – II | 3.3 | The student should be able to
CO 1. Know the pathophysiology of selected disease states and the rationale for drug therapy.
CO 2. Know the therapeutic approach to management of these diseases.
CO 3. Know the controversies in drug therapy.
CO 4. Know the importance of preparation of individualised therapeutic plans based on diagnosis.
CO 5. Appreciate the need to identify the patient specific parameters relevant in initiating drug therapy and monitoring therapy (including alternatives, timecourse of clinical and laboratory indices of therapeutic response and adverse effects). |
| PHARMACEUTICAL JURISPRUDENCE | 3.4 | The student should be able to
CO 1. Practice the Professional ethics.
CO 2. Understand the various concepts of the pharmaceutical legislation in India.
CO 4. Know the Drug policy, DPCO, Patent and design act.
CO 5. Understand the labeling requirements and packaging guidelines for drugs and cosmetics.
CO 6. Understand the concepts of Dangerous Drugs Act, Pharmacy Act and Excise duties Act.
CO 7. Other laws as prescribed by the Pharmacy Council of India from time to time including International Laws. |
| MEDICINAL CHEMISTRY | 3.5 | The student should be able to
CO 1. Understand different classes of drugs including SAR, mechanism of action, synthesis of important compounds, chemical nomenclature, brand names of important marketed products and their side effects. |
<table>
<thead>
<tr>
<th>Subject</th>
<th>Year</th>
<th>Course Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHARMACEUTICAL FORMULATIONS</td>
<td>3.6</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Understand the principle involved in formulation of various pharmaceutical dosage forms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Prepare various pharmaceutical formulation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Perform evaluation of pharmaceutical dosage forms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Understand and appreciate the concept of bioavailability and bioequivalence, their role in clinical situations.</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHARMACOTHERAPEUTICS – III</td>
<td>4.1</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Understand the pathophysiology of selected disease states and the rationale for drug therapy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Know the therapeutic approach to management of these diseases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Understand the controversies in drug therapy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Importance of preparation of individualized therapeutic plans based on diagnosis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5. Identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical and laboratory indices of therapeutic response and adverse effects).</td>
</tr>
<tr>
<td>HOSPITAL PHARMACY</td>
<td>4.2</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Know various drug distribution methods.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Know the professional practice management skills in hospital pharmacies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Provide unbiased drug information to the doctors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Know the manufacturing practices of various formulations in hospital set up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5. Appreciate the practice based research methods.</td>
</tr>
<tr>
<td>Course</td>
<td>CO</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>CLINICAL PHARMACY</td>
<td>4.3</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Monitor drug therapy of patient through medication chart review and clinical review.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Obtain medication history interview and counsel the patients.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Identify and resolve drug related problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Detect, assess and monitor adverse drug reaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5. Interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 6. Retrieve, analyze, interpret and formulate drug or medicine information.</td>
</tr>
<tr>
<td>BIOSTATISTICS AND RESEARCH</td>
<td>4.4</td>
<td>The student should be able to</td>
</tr>
<tr>
<td>METHODOLOGY</td>
<td></td>
<td>CO 1. Know the operation of M.S. Excel, SPSS, R and MINITAB®, DoE (Design of Experiment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Know the various statistical techniques to solve statistical problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. Appreciate statistical techniques in solving the problems.</td>
</tr>
<tr>
<td>BIOPHARMACEUTICS AND</td>
<td>4.5</td>
<td>The student should be able to</td>
</tr>
<tr>
<td>PHARMACOKINETICS</td>
<td></td>
<td>CO 1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 4. Understand various pharmacokinetic parameters, their significance & applications</td>
</tr>
<tr>
<td>CLINICAL TOXICOLOGY</td>
<td>4.6</td>
<td>The student should be able to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 1. Explain the various types of toxicity studies.</td>
</tr>
<tr>
<td>Fifth year</td>
<td>5.1</td>
<td>CLINICAL RESEARCH</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.2</th>
<th>PHARMACOEPIDEMIOLOGY AND PHARMACOECONOMICS</th>
<th>The student should be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO 1. Understand the various epidemiological methods and their applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 2. Understand the fundamental principles of pharmaco economics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 3. Identify and determine relevant cost and consequences associated with pharmacy products and services.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 4. Perform the key pharmaco economics analysis methods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 5. Understand the pharmaco economic decision analysis methods and its applications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 6. Describe current pharmaco economic methods and issues.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 7. Understand the applications of pharmaco economics to various pharmacy settings.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.3</th>
<th>CLINICAL PHARMACOKINETICS AND PHARMACOTHERAPEUTIC DRUG MONITORING</th>
<th>The student should be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO 1. Design the drug dosage regimen for individual patients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO 2. Interpret and correlate the plasma drug concentrations with</td>
<td></td>
</tr>
</tbody>
</table>
| | patients’ therapeutic outcomes.
| | CO 3. Recommend dosage adjustment for patients with renal/ hepatic impairment.
| | CO 4. Recommend dosage adjustment for paediatrics and geriatrics.
| | CO 5. Manage pharmacokinetic drug interactions.
| | CO 6. Apply pharmacokinetic parameters in clinical settings.
| | CO 7. Interpret the impact of genetic polymorphisms of individuals on pharmacokinetics and or pharmaco dynamics of drug.
| | CO 8. Do pharmacokinetic modeling for the given data using the principles of pharmacometrics |
Pharm.D. Regulations 2008

Regulations framed under section 10 of the Pharmacy Act, 1948 (8 of 1948).

(As approved by the Government of India, Ministry of Health vide, letter No.V.13013/1/2007-PMS, dated the 13th March, 2008 and notified by the Pharmacy Council of India).

No.14-126/2007-PCI.— In exercise of the powers conferred by section 10 of the Pharmacy Act, 1948 (8 of 1948), the Pharmacy Council of India, with the approval of the Central Government, hereby makes the following regulations, namely:-

CHAPTER-I

1. Short title and commencement.—(1) These regulations may be called the Pharm.D. Regulations 2008.

(2) They shall come into force from the date of their publication in the official Gazette.

2. Pharm.D. shall consist of a certificate, having passed the course of study and examination as prescribed in these regulations, for the purpose of registration as a pharmacist to practice the profession under the Pharmacy Act, 1948.

CHAPTER-II

3. Duration of the course.—

a) Pharm.D: The duration of the course shall be six academic years (five years of study and one year of internship or residency) full time with each academic year spread over a period of not less than two hundred working days. The period of six years duration is divided into two phases—

Phase I – consisting of First, Second, Third, Fourth and Fifth academic year.

Phase II—consisting of internship or residency training during sixth year involving posting in speciality units. It is a phase of training wherein a student is exposed to actual pharmacy practice or clinical pharmacy services and acquires skill under supervision so that he or she may become capable of functioning independently.

b) Pharm.D. (Post Baccalaureate): The duration of the course shall be forthree academic years (two years of study and one year internship or residency) full time with each academic year spread over a period of not less than two hundred working days. The period of three years duration is divided into two phases—

Phase I – consisting of First and Second academic year.

Phase II—consisting of internship or residency training during third year involving posting in speciality units. It is a phase of training wherein a student is exposed to actual pharmacy practice or clinical pharmacy services, and acquires skill under supervision so that he or she may become capable of functioning independently.

Minimum qualification for admission to.—

a) Pharm.D. Part-I Course – A pass in any of the following examinations—

(1) 10+2 examination with Physics and Chemistry as compulsory subjects along with one of the following
Mathematics or Biology.

(2) A pass in a D.Pharm. course from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act.

(3) Any other qualification approved by the Pharmacy Council of India as equivalent to any of the above examinations.

Provided that a student should complete the age of 17 years on or before 31st December of the year of admission to the course.

Provided that there shall be reservation of seats for the students belonging to the Scheduled Castes, Scheduled Tribes and other Backward Classes in accordance with the instructions issued by the Central Government/State Government/Union Territory Administration as the case may be from time to time.

b) Pharm.D. (Post Baccalaureate) Course-

A pass in B.Pharm from an institution approved by the Pharmacy Council of India under section 12 of the Pharmacy Act:

Provided that there shall be reservation of seats for the students belonging to the Scheduled Castes, Scheduled Tribes and other Backward Classes in accordance with the instructions issued by the Central Government/State Government/Union Territory Administration as the case may be from time to time.

4. Number of admissions in the above said programmes shall be as prescribed by the Pharmacy Council of India from time to time and presently be restricted as below—

5. Institutions running B.Pharm programme approved under section 12 of the Pharmacy Act will only be permitted to run Pharm.D. programme. Pharm.D. (Post Baccalaureate) programme will be permitted only in those institutions which are permitted to run Pharm.D. programme.

6. Course of study. – The course of study for Pharm.D. shall include the subjects as given in the Tables below. The number of hours in a week, devoted to each subject for its teaching in theory, practical and tutorial shall not be less than that noted against it in columns (3), (4) and (5) below.
First Year:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>1.1</td>
<td>Human Anatomy and Physiology</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Pharmaceutics</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Medicinal Biochemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Pharmaceutical Organic Chemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>Pharmaceutical Inorganic Chemistry</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>Remedial Mathematics/ Biology</td>
<td>3</td>
<td>3*</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>16</td>
<td>18</td>
<td>6 = (40)</td>
</tr>
</tbody>
</table>

* For Biology

Second Year:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathophysiology</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>Pharmaceutical Microbiology</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.3</td>
<td>Pharmacognosy & Phytopharmaceuticals</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.4</td>
<td>Pharmacology-I</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>Community Pharmacy</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2.6</td>
<td>Pharmacotherapeutics-I</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>17</td>
<td>9</td>
<td>6 = 32</td>
</tr>
</tbody>
</table>

Third Year:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Pharmacology-II</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>Pharmaceutical Analysis</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.3</td>
<td>Pharmacotherapeutics-II</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.4</td>
<td>Pharmaceutical Jurisprudence</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5</td>
<td>Medicinal Chemistry</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.6</td>
<td>Pharmaceutical Formulations</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>16</td>
<td>15</td>
<td>5 = 36</td>
</tr>
</tbody>
</table>

Fourth Year :

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Practical/Hospital Posting</th>
<th>No. of hours of Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>15</td>
<td>12</td>
<td>6 = 33</td>
</tr>
</tbody>
</table>
Fifth Year:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>No. of hours of Theory</th>
<th>No. of hours of Hospital posting*</th>
<th>No. of hours of Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoconomics</td>
<td>3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.4</td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>5.5</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total hours</td>
<td>8</td>
<td>20</td>
<td>4 = 32</td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.

Sixth Year:

Internship or residency training including postings in speciality units. Student should independently provide the clinical pharmacy services to the allotted wards.

(i) Six months in General Medicine department, and

(ii) Two months each in three other speciality departments

7. Syllabus.– The syllabus for each subject of study in the said Table shall be as specified in Appendix-A to these regulations.

8. Approval of the authority conducting the course of study. – (1) No person, institution, society or university shall start and conduct Pharm.D or Pharm.D. (Post Baccalaureate) program without the prior approval of the Pharmacy Council of India.

(2) Any person or pharmacy college for the purpose of obtaining permission under section 12 of the Pharmacy Act, shall submit a scheme as prescribed by the Pharmacy Council of India.

(3) The scheme referred to in sub-section (2) above, shall be in such form and contain such particulars and be preferred in such manner and be accompanied with such fee as may be prescribed:

Provided that the Pharmacy Council of India shall not approve any institution under these regulations unless it provides adequate arrangements for teaching in regard to building, accommodation, labs., equipments, teaching staff, non-teaching staff, etc., as specified in Appendix-B to these regulations.

9. Examination. – (1) Every year there shall be an examination to examine the students.

(2) Each examination may be held twice every year. The first examination in a year shall be the annual examination and the second examination shall be supplementary examination.

(3) The examinations shall be of written and practical (including oral nature) carrying maximum marks for each part of a subject as indicated in Tables below:
First Year Examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>1.1</td>
<td>Human Anatomy and Physiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.2</td>
<td>Pharmaceutics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.3</td>
<td>Medicinal Biochemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.4</td>
<td>Pharmaceutical Organic Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.5</td>
<td>Pharmaceutical Inorganic Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>1.6</td>
<td>Remedial Mathematics/Biology</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

* for Biology

Total: 600

1200 = 1200

Second Year Examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathophysiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Pharmaceutical Microbiology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Pharmacognosy & Phytopharmaceuticals</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Pharmacology-I</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Community Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Pharmacotherapeutics-I</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

Total: 600

900 = 900

Third Year Examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examination</td>
<td>Sessional</td>
</tr>
<tr>
<td>3.1</td>
<td>Pharmacology-II</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Pharmaceutical Analysis</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Pharmacotherapeutics-II</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Section</td>
<td>Subject</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>3.4</td>
<td>Pharmaceutical Jurisprudence</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.5</td>
<td>Medicinal Chemistry</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>3.6</td>
<td>Pharmaceutical Formulations</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

| | | 600| | | 500=1100 |
Fourth Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examina</td>
<td>Sessional</td>
</tr>
<tr>
<td>4.1</td>
<td>Pharmacotherapeutics-III</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.2</td>
<td>Hospital Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Clinical Pharmacy</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.4</td>
<td>Biostatistics & Research Methodology</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.5</td>
<td>Biopharmaceutics & Pharmacokinetics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>4.6</td>
<td>Clinical Toxicology</td>
<td>70</td>
<td>30</td>
</tr>
</tbody>
</table>

| | | | | 600 | | | 400=1000 |

Fifth Year examination:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of Subject</th>
<th>Maximum marks for Theory</th>
<th>Maximum marks for Practicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Examina</td>
<td>Sessional</td>
</tr>
<tr>
<td>5.1</td>
<td>Clinical Research</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.2</td>
<td>Pharmacoepidemiology and Pharmacoeconomics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>5.3</td>
<td>Clinical Pharmacokinetics & Pharmacotherapeutic Drug Monitoring</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Clerkship *</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.4</td>
<td>Project work (Six Months)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Attending ward rounds on daily basis.
** 30 marks – viva-voce (oral)
70 marks – Thesis work

10. Eligibility for appearing Examination.— Only such students who produce certificate from the Head of the Institution in which he or she has undergone the Pharm.D. or as the case may be, the Pharm.D. (Post Baccalaureate) course, in proof of his or her having regularly and satisfactorily undergone the course of study by attending not less than 80% of the classes held both in theory and in practical separately in each subject shall be eligible for appearing at examination.

11. Mode of examinations.— (1) Theory examination shall be of three hours and practical examination shall be of four hours duration.

(2) A Student who fails in theory or practical examination of a subject shall re-appear both in theory and practical of the same subject.

(3) Practical examination shall also consist of a viva –voce (Oral) examination.
(4) Clerkship examination– Oral examinations shall be conducted after the completion of clerkship of students. An external and an internal examiner will evaluate the student. Students may be asked to present the allotted medical cases followed by discussion. Students’ capabilities in delivering clinical pharmacy services, pharmaceutical care planning and knowledge of therapeutics shall be assessed.

12. Award of sessional marks and maintenance of records.— (1) A regular record of both the theory and practical classwork and examinations conducted in an institution imparting training for Pharm.D. or the case may be, Pharm.D. (Post Baccalaureate) course, shall be maintained for each student in the institution and 30 marks for each theory and 30 marks for each practical subject shall be allotted as sessional.

(2) There shall be at least two periodic sessional examinations during each academic year and the highest aggregate of any two performances shall form the basis of calculating sessional marks.

(3) The sessional marks in practicals shall be allotted on the following basis:

(i) Actual performance in the sessional examination (20 marks);

(ii) Day to day assessment in the practical classwork, promptness, viva-voce record maintenance, etc. (10 marks).

13. Minimum marks for passing examination.— A student shall not be declared to have passed examination unless he or she secures at least 50% marks in each of the subjects separately in the theory examinations, including sessional marks and at least 50% marks in each of the practical examinations including sessional marks. The students securing 60% marks or above in aggregate in all subjects in a single attempt at the Pharm.D. or the case may be, Pharm.D. (Post Baccalaureate) course, examination shall be declared to have passed in first class. Students securing 75% marks or above in any subject or subjects shall be declared to have passed with distinction in the subject or those subjects provided he or she passes in all the subjects in a single attempt.

14. Eligibility for promotion to next year.— All students who have appeared for all the subjects and passed the first year annual examination are eligible for promotion to the second year and, so on. However, failure in more than two subjects shall debar him or her from promotion to the next year classes.

15. Internship.— (1) Internship is a phase of training wherein a student is expected to conduct actual practice of pharmacy and health care and acquires skills under the supervision so that he or she may become capable of functioning independently.

(2) Every student has to undergo one year internship as per Appendix-C to these regulations.

16. Approval of examinations.— Examinations mentioned in regulations 10 to 12 and 14 shall be held by the examining authority hereinafter referred to as the university, which shall be approved by the Pharmacy Council of India under sub-section (2) of section 12 of the Pharmacy Act, 1948. Such approval shall be granted only if the examining authority concerned fulfills the conditions as specified in Appendix-D to these regulations.

17. Certificate of passing examination.— Every student who has passed the examinations for the Pharm.D. (Doctor of Pharmacy) or Pharm.D. (Post Baccalaureate) (Doctor of Pharmacy) as the case may be, shall be granted a certificate by the examining authority.

CHAPTER-III

Practical training

18. Hospital posting.— Every student shall be posted in constituent hospital for a period of not less than fifty hours to be covered in not less than 200 working days in each of second, third & fourth year course. Each student shall submit a report duly certified by the preceptor and duly attested by the Head of the Department or Institution as prescribed. In the fifth year, every student shall spend half a day in the morning hours attending ward rounds on daily basis as a part of clerkship. Theory teaching may be scheduled in the afternoon.
19. Project work.— (1) To allow the student to develop data collection and reporting skills in the area of community, hospital and clinical pharmacy, a project work shall be carried out under the supervision of a teacher. The project topic must be approved by the Head of the Department or Head of the Institution. The same shall be announced to students within one month of commencement of the fifth year classes. Project work shall be presented in a written report and a seminar at the end of the year. External and the internal examiners shall do the assessment of the project work.

(2) Project work shall comprise of objectives of the work, methodology, results, discussions and conclusions.

20. Objectives of project work.— The main objectives of the project work isto—

(i) show the evidence of having made accurate description of published work of others and of having recorded the findings in an impartial manner; and

(ii) develop the students in data collection, analysis and reporting and interpretations skills.

21. Methodology.— To complete the project work following methodology shall be adopted, namely:—

(i) students shall work in groups of not less than two and not more than four under an authorised teacher;

(ii) project topic shall be approved by the Head of the Department or Head of the Institution;

(iii) project work chosen shall be related to the pharmacy practice in community, hospital and clinical setup. It shall be patient and treatment (Medicine) oriented, like drug utilisation reviews, pharmacoepidemiology, pharmacovigilance or pharmacoeconomics;

(iv) project work shall be approved by the institutional ethics committee;

(v) student shall present at least three seminars, one in the beginning, one at middle and one at the end of the project work; and

(vi) two-page write-up of the project indicating title, objectives, methodology, anticipated benefits and references shall be submitted to the Head of the Department or Head of the Institution.

22. Reporting.— (1) Students working on the project shall submit jointly to the Head of the Department or Head of the Institution a project report of about 40-50 pages. Project report should include a certificate issued by the authorised teacher, Head of the Department as well as by the Head of the Institution.

(2) Project report shall be computertyped in doublespace using Times Roman font on A4 paper. The title shall be in bold with font size 18, sub-titles in bold with font size 14 and the text with font size 12. The cover page of the project report shall contain details about the name of the student and the name of the authorised teacher with font size 14.

(3) Submission of the project report shall be done at least one month prior to the commencement of annual or supplementary examination.

23. Evaluation.— The following methodology shall be adopted for evaluating the project work—

(i) Project work shall be evaluated by internal and external examiners.

(ii) Students shall be evaluated in groups for four hours (i.e., about half an hour for a group of four students).

(iii) Three seminars presented by students shall be evaluated for twenty marks each and the average of best two shall be forwarded to the university with marks of other subjects.
(iv) Evaluation shall be done on the following items: Marks

a) Write up of the seminar (7.5)
b) Presentation of work (7.5)
c) Communication skills (7.5)
d) Question and answer skills (7.5)

Total (30 marks)

(v) Final evaluation of project work shall be done on the following items: Marks

a) Write up of the seminar (17.5)
b) Presentation of work (17.5)
c) Communication skills (17.5)
d) Question and answer skills (17.5)

Total (70 marks)

Explanation.—For the purposes of differentiation in the evaluation in case of topic being the same for the group of students, the same shall be done based on item numbers b, c, and d mentioned above.
APPENDIX-A
(See regulation 8)
PHARM.D. SYLLABUS

First Year

1.1 HUMAN ANATOMY & PHYSIOLOGY (THEORY)

Theory : 3 Hrs. /Week

1. **Scope and Objectives:** This course is designed to impart a fundamental knowledge on the structure and functions of the human body. It also helps in understanding both homeostasis mechanisms and homeostatic imbalances of various body systems. Since a medicament, which is produced by a pharmacist, is used to correct the deviations in human body, it enhances the understanding of how the drugs act on the various body systems in correcting the disease state of the organs.

2. **Upon completion of the course the student shall be able to:**
 a. describe the structure (gross and histology) and functions of various organs of the human body;
 b. describe the various homeostatic mechanisms and their imbalances of various systems;
 c. identify the various tissues and organs of the different systems of the human body;
 d. perform the hematological tests and also record blood pressure, heart rate, pulse and respiratory volumes;
 e. appreciate coordinated working pattern of different organs of each system; and
 f. appreciate the interlinked mechanisms in the maintenance of normal functioning (homeostasis) of the human body

3. **Course materials:**

 Text books

 Reference books
 c. Peter L. Williams, Roger Warwick, Mary Dyson and Lawrence, H.

4. **Lecture wise program:**

 Topics
 1. Scope of anatomy and physiology, basic terminologies used in this subject (Description of the body as such planes and terminologies)
2 Structure of cell – its components and their functions.

3 Elementary tissues of the human body: epithelial, connective, muscular and nervous tissues - their sub-types and characteristics

4 a) Osseous system - structure, composition and functions of the Skeleton. (done in practical classes -6hrs)
 b) Classification of joints, Types of movements of joints and disorders of joints (Definitions only)

5 Haemopoietic System
 a) Composition and functions of blood
 b) Haemopoiesis and disorders of blood components (definition of disorder)
 c) Blood groups
 d) Clotting factors and mechanism
 e) Platelets and disorders of coagulation

6 Lymph
 a) Lymph and lymphatic system, composition, formation and circulation.
 b) Spleen: structure and functions, Disorders
 c) Disorders of lymphatic system (definition only)

7 Cardiovascular system
 a) Anatomy and functions of heart
 b) Blood vessels and circulation (Pulmonary, coronary and systemic circulation)
 c) Electrocardiogram (ECG)
 d) Cardiac cycle and heart sounds
 e) Blood pressure – its maintenance and regulation
 f) Definition of the following disorders
 Hypertension, Hypotension, Arteriosclerosis, Atherosclerosis, Angina, Myocardial infarction, Congestive heart failure, Cardiac arrhythmias

8 Respiratory system
 a) Anatomy of respiratory organs and functions
 b) Mechanism / physiology of respiration and regulation of respiration
 c) Transport of respiratory gases
 d) Respiratory volumes and capacities, and definition of Hypoxia, Asphyxia, Dybarism, Oxygen therapy and resuscitation.

9 Digestive system
 a) Anatomy and physiology of GIT
b) Anatomy and functions of accessory glands of GIT

c) Digestion and absorption

d) Disorders of GIT

(definition only) 10 Nervous system

a) Definition and classification of nervous system

b) Anatomy, physiology and functional areas of cerebrum

c) Anatomy and physiology of cerebellum

d) Anatomy and physiology of midbrain

e) Thalamus, hypothalamus and Basal Ganglia

f) Spinal cord: Structure & reflexes – mono-poly-planter

g) Cranial nerves – names and functions

h) ANS – Anatomy & function of sympathetic & parasympathetic N.S.

11 Urinary system

a) Anatomy and physiology of urinary system

b) Formation of urine

c) Renin Angiotensin system – Juxtaglomerular apparatus - acid base balance

d) Clearance tests and micturition

12 Endocrine system

a) Pituitary gland

b) Adrenal gland

c) Thyroid and Parathyroid glands

d) Pancreas and gonads

13 Reproductive system

a) Male and female reproductive system

b) Their hormones – Physiology of menstruation

c) Spermatogenesis & Oogenesis

d) Sex determination (genetic basis)

e) Pregnancy and maintenance and parturition

f) Contraceptive devices

14 Sense organs

a) Eye

b) Ear
c) Skin

d) Tongue &

Nose 15

Skeletal muscles

a) Histology

b) Physiology of Muscle contraction

c) Physiological properties of skeletal muscle and their disorders (definitions) 16

Sports physiology

a) Muscles in exercise, Effect of athletic training on muscles and muscle performance,
b) Respiration in exercise, CVS in exercise, Body heat in exercise, Body fluids and salts in exercise,
c) Drugs and athletics

HUMAN ANATOMY & PHYSIOLOGY (PRACTICAL) Practical:

3 Hrs./Week

General Requirements: Dissection box, Laboratory Napkin, muslin cloth, record, Observation book (100 pages), Stationary items, Blood lancet.

Course materials:

Text books

Reference books

Ranade VG, Text book of practical physiology, Latest edition, Publisher: PVG, Pune Anderson Experimental Physiology, Latest edition, Publisher: NA

List of Experiments:

1. Study of tissues of human body
 (a) Epithelial tissue.
 (b) Muscular tissue.
2. Study of tissues of human body
 (a) Connective tissue.
 (b) Nervous tissue.
3. Study of appliances used in hematological experiments.
7. Determination of (a) Erythrocyte Sedimentation Rate.
(b) Hemoglobin content of Blood.
(c) Bleeding time & Clotting time.

8. Determination of
 (a) Blood Pressure.
 (b) Bloodgroup.

9. Study of various systems with the help of charts, models & specimens
 (a) Skeleton system part I- axial skeleton.
 (b) Skeleton system part II- appendicular skeleton.
 (c) Cardiovascular system.
 (d) Respiratory system.
 (e) Digestive system.
 (f) Urinary system.
 (g) Nervous system.
 (h) Special senses.
 (i) Reproductive system.

10. Study of different family planning appliances.
11. To perform pregnancy diagnosis test.
12. Study of appliances used in experimental physiology.
13. To record simple muscle curve using gastroenemius sciatic nerve preparation.
14. To record simple summation curve using gastroenemius sciatic nerve preparation.
15. To record simple effect of temperature using gastroenemius sciatic nerve preparation.
17. To record simple fatigue curve using gastroenemius sciatic nerve preparation.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>07</td>
<td>20</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
PHARMACEUTICS (THEORY)

Theory: 2 Hrs./Week

1. **Scope and objectives:** This course is designed to impart a fundamental knowledge on the art and science of formulating different dosage forms. It prepares the students for most basics of the applied field of pharmacy.

2. **Upon the completion of the course the student should be able to:**
 a. know the formulation aspects of different dosage forms;
 b. do different pharmaceutical calculations involved in formulation;
 c. formulate different types of dosage forms; and
 d. appreciate the importance of good formulation for effectiveness.

3. **Course materials:**

 Text books
 a. Cooper and Gunns Dispensing for pharmacists.

 Reference books
 a. Introduction to Pharmaceutical dosage forms by Howard C. Ansel.
 b. Remington’s Pharmaceutical Sciences.
 c. Register of General Pharmacy by Cooper and Gunn.
 d. General Pharmacy by M.L. Schroff.

4. **Lecture wise programme:**

 Topics
 1. a. Introduction to dosage forms - classification and definitions
 b. Prescription: definition, parts and handling
 2. Historical background and development of profession of pharmacy and pharmaceutical industry in brief.
 3. Development of Indian Pharmacopoeia and introduction to other Pharmacopoeias such as BP, USP, European Pharmacopoeia, Extra Pharmacopoeia and Indian national formulary.
 4. Weights and measures, Calculations involving percentage solutions, allegation, proof spirit, isotonic solutions etc.
 5. Powders and Granules: Classification advantages and disadvantages, Preparation of simple, compound powders, Insufflations, Dusting powders, Eutectic and Explosive powders, Tooth powder and effervescent powders and granules.
 6. Monophasic Dosage forms: Theoretical aspects of formulation including adjuvant like stabilizers, colorants, flavour with examples. Study of Monophasic liquids like gargles, mouthwashes, Throat paint,
Ear drops, Nasal drops, Liniments and lotions, Enemas and collodions.

7 Biphasic dosage forms: Suspensions and emulsions. Definition, advantages and disadvantages, classification, test for the type of emulsion, formulation, stability and evaluation.

8 Suppositories and pessaries: Definition, advantages and disadvantages, types of base, method of preparation, Displacement value and evaluation.

9 Galenicals: Definition, equipment for different extraction processes like infusion, Decoction, Maceration and Percolation, methods of preparation of spirits, tinctures and extracts.

10 Pharmaceutical calculations.

11 Surgical aids: Surgical dressings, absorbable gelatin sponge, sutures, ligatures and medicated bandages.

12 Incompatibilities: Introduction, classification and methods to overcome the incompatibilities.

PHARMACEUTICS (PRACTICAL)

Practical: 3 Hrs./Week

List of Experiments:

1. **Syrups**
 a. Simple Syrup IP
 b. Syrup of Ephedrine Hcl NF
 c. Syrup Vasaka IP
 d. Syrup of ferrous Phosphate IP
 e. Orange Syrup

2. **Elixir**
 a. Piperazine citrate elixir BP
 b. Cascara elixir BPC
 c. Paracetamol elixir BPC

3. **Linctus**
 a. Simple Linctus BPC
 b. Pediatric simple Linctus BPC

4. **Solutions**
 a. Solution of cresol with soap IP
 b. Strong solution of ferric chloride BPC
 c. Aqueous Iodine Solution IP
 d. Strong solution of Iodine IP
 e. Strong solution of ammonium acetate IP
5. Liniments
 a. Liniment of turpentineIP*
 b. Liniment of camphorIP

6. Suspensions*
 a. Calaminelotion
 b. Magnesium Hydroxide mixtureBP

7. Emulsions*
 a. Cod liver oil emulsion
 b. Liquid paraffin emulsion

8. Powders
 a. Eutectic powder
 b. Explosive powder
 c. Dusting powder
 d. Insufflations

9. Suppositories
 a. Boric acid suppositories
 b. Chloral suppositories

10. Incompatibilities
 a. Mixtures with Physical
 b. Chemical & Therapeutic incompatibilities

* colourless bottles required for dispensing ☐ Paper envelope (white), butter paper and white paper required for dispensing.

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
MEDICINAL BIOCHEMISTRY (THEORY)

Theory: 3 Hrs./Week

1. **Scope of the Subject:** Applied biochemistry deals with complete understanding of the molecular level of the chemical process associated with living cells. Clinical chemistry deals with the study of chemical aspect of human life in health and illness and the application of chemical laboratory methods for diagnosis, control of treatment, and prevention of diseases.

2. **Objectives of the Subject** (Know, do, appreciate):

 The objective of the present course is providing biochemical facts and the principles to the students of pharmacy. Upon completion of the subject student shall be able to –

 a. understand the catalytic activity of enzymes and importance of isoenzymes in diagnosis of diseases;
 b. know the metabolic process of biomolecules in health and illness (metabolic disorders);
 c. understand the genetic organization of mammalian genome; protein synthesis; replication; mutation and repair mechanism;
 d. know the biochemical principles of organ function tests of kidney, liver and endocrine gland; and
 e. do the qualitative analysis and determination of biomolecules in the body fluids.

Text books (Theory)

a. Harpers review of biochemistry - Martin
b. Text book of biochemistry – D. Satyanarayana
c. Text book of clinical chemistry - Alex Kaplan & Laverve L. Szabo

Reference books (Theory)

a. Principles of biochemistry -- Lehninger
b. Text book of biochemistry -- Ramarao
c. Practical Biochemistry - David T. Plummer.
d. Practical Biochemistry - Pattabhiraman.

3. **Lecture wise programme:**

Topics

1. **Introduction to biochemistry:** Cell and its biochemical organization, transport process across the cell membranes. Energy rich compounds; ATP, Cyclic AMP and their biological significance.

2. **Enzymes:** Definition; Nomenclature; IUB classification; Factor affecting enzyme activity; Enzyme action; enzyme inhibition. Isoenzymes and their therapeutic and diagnostic applications; Coenzymes and their biochemical role and deficiency diseases.

3. **Carbohydrate metabolism:** Glycolysis, Citric acid cycle (TCA cycle), HMP shunt, Glycogenolysis, gluconeogenesis, glycosynthesis, Metabolic disorders of carbohydrate metabolism (diabetes mellitus and glycogen storage diseases); Glucose, Galactose intolerance test and their significance; hormonal regulation of carbohydrate metabolism.

4. **Lipid metabolism:** Oxidation of saturated (β-oxidation); Ketogenesis and ketolysis; biosynthesis of fatty
acids, lipids; metabolism of cholesterol; Hormonal regulation of lipid metabolism. Defective metabolism of lipids (Atherosclerosis, fatty liver, hypercholesterolemia).

5 **Biological oxidation:** Coenzyme system involved in Biological oxidation. Electron transport chain (its mechanism in energy capture; regulation and inhibition); Uncouplers of ETC; Oxidative phosphorylation.

6 **Protein and amino acid metabolism:** protein turnover; nitrogen balance; Catabolism of Amino acids (Transamination, deamination & decarboxylation). Urea cycle and its metabolic disorders; production of bile pigments; hyperbilirubinemia, porphoria, jaundice. Metabolic disorder of Aminoacids.

7 **Nucleic acid metabolism:** Metabolism of purine and pyrimidine nucleotides; Protein synthesis; Genetic code; inhibition of protein synthesis; mutation and repair mechanism; DNA replication (semiconservative/onion peel models) and DNA repair mechanism.

8 **Introduction to clinical chemistry:** Cell; composition; malfunction; Role of the clinical chemistry laboratory.

9 **The kidney function tests:** Role of kidney; Laboratory tests for normal function includes-
 a) Urine analysis (macroscopic and physical examination, quantitative and semiquantitative tests.)
 b) Test for NPN constituents. (Creatinine/urea clearance, determination of blood and urine creatinine, urea and uric acid)
 c) Urine concentration test
 d) Urinary tract calculi (stones)

10 **Liver function tests:** Physiological role of liver, metabolic, storage, excretory, protective, circulatory functions and function in blood coagulation.
 a) Test for hepatic dysfunction-Bile pigments metabolism.
 b) Test for hepatic function test- Serum bilirubin, urine bilirubin, and urineurobilinogen.
 c) Dye tests of excretory function.
 d) Tests based upon abnormalities of serum proteins.

Selected enzymetests.

11 **Lipid profile tests:** Lipoproteins, composition, functions. Determination of serum lipids, total cholesterol, HDL cholesterol, LDL cholesterol and triglycerides.

12 **Immunochemical techniques** for determination of hormone levels and protein levels in serum for endocrine diseases and infectious diseases. Radio immuno assay (RIA) and Enzyme Linked Immuno Sorbent Assay (ELISA)

13 **Electrolytes:** Body water, compartments, water balance, and electrolyte distribution. Determination of sodium, calcium potassium, chlorides, bicarbonates in the body fluids.
MEDICINAL BIOCHEMISTRY (PRACTICAL)

Practical: 3 Hrs./Week

Title of the Experiment:

1. Qualitative analysis of normal constituents of urine.*
2. Qualitative analysis of abnormal constituents of urine.*
3. Quantitative estimation of urine sugar by Benedict’s reagent method.**
4. Quantitative estimation of urine chlorides by Volhard’s method.**
5. Quantitative estimation of urine creatinine by Jaffe’s method.**
6. Quantitative estimation of urine calcium by precipitation method.**
7. Quantitative estimation of serum cholesterol by Libermann Burchard’s method.**
8. Preparation of Folin Wu filtrate from blood.*
9. Quantitative estimation of blood creatinine.**
10. Quantitative estimation of blood sugar Folin-Wu method.**

Estimation of SGOT in serum.**

12. Estimation of SGPT in serum.**
13. Estimation of Urea in Serum.**
14. Estimation of Proteins in Serum.**
15. Determination of serum bilirubin**
16. Determination of Glucose by means of Glucose oxidase.**
17. Enzymatic hydrolysis of Glycogen/Starch by Amylases.**
18. Study of factors affecting Enzyme activity. (pH & Temp.)**
19. Preparation of standard buffer solutions and its pH measurements (any two)*

Experiment on lipid profile tests**

21. Determination of sodium, calcium and potassium in serum.**

** indicate major experiments & * indicate minor experiments

Assignments:

Format of the assignment

1. Minimum & Maximum number of pages.
2. It shall be computer draft copy.
3. Reference(s) shall be included at the end.
4. Name and signature of the student.
5. Assignment can be a combined presentation at the end of the academic year.

6. Time allocated for presentation may be 8+2Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).

PHARMACEUTICAL ORGANIC CHEMISTRY (THEORY)

Theory: 3 Hrs./Week

1. **Scope and objectives:** This course is designed to impart a very good knowledge about

 a. IUPAC/Common system of nomenclature of simple organic compounds belonging to different classes of organic compounds;

 b. Some important physical properties of organic compounds;

 c. Free radical/nucleophilic [alkyl/acyl/aryl]/electrophilic substitution, free radical/nucleophilic/electrophilic/addition, elimination, oxidation and reduction reactions with mechanism, orientation of the reaction, order of reactivity, stability of compounds;

 d. Some named organic reactions with mechanisms; and

 e. Methods of preparation, test for purity, principle involved in the assay, important medicinal uses of some important organic compounds.

2. **Course materials:**

 Text books

 a. T.R. Morrison and R. Boyd - Organic Chemistry,

 b. Bentley and Driver - Text book of Pharmaceutical Chemistry

 c. I.L. Finer - Organic chemistry, the fundamentals of chemistry

 Reference books

 a. Organic chemistry – J.M. Cram and D.J. Cram

 b. Organic chemistry - Brown

 c. Advanced organic chemistry - Jerry March, Wiley

 d. Organic chemistry - Cram and Hammered, Pine Hendrickson
3. Lecture wise programme:

Topics

1. Structures and Physical properties:
 a. Polarity of bonds, polarity of molecules, M.P, Inter molecular forces, B.P, Solubility, non ionic solutes and ionic solutes, protic and aprotic Solvents, ionpairs,
 b. Acids and bases, Lowry bronsted and Lewistheories
 c. Isomerism

2. Nomenclature of organic compound belonging to the following classes Alkanes, Alkenes, Dienes, Alkynes, Alcohols, Aldehydes, Ketones, Amides, Amines, Phenols, Alkyl Halides, Carboxylic Acid, Esters, Acid Chlorides AndCycloalkanes.

3. Free radicals chain reactions of alkane: Mechanism, relative reactivity andstability

4. Alicyclic compounds: Preparations of cyclo alkanes, Bayer strain theory and orbital picture of angle strain.

5. Nucleophilicaliphatics substitutionmechanism:Nucleophilesandleavinggroups,kineticsofsecondand first order reaction, mechanism and kinetics of SN2 reactions. Stereochemistry and steric hindrance, role of solvents, phase transfer catalysis, mechanism and kinetics of SN1 reactions, stereochemistry, carboxylation and their stability, rearrangement of carboxylation, role of solvents in SN1 reaction, Ion dipole bonds, SN2 versus SN1 solvolyses, nucleophilic assistance by thesolvents.

6. Dehydro halogenation of alkyl halides: 1,2 elimination, kinetics, E2 and E1 mechanism, elimination via carboxylation, evidenceforE2mechanism, absenceofrarrangementisotopeeffect, absencehydrogen exchange, theelementeffect, orientationandreactivity, E2versusE1,eliminationversussusubstitution, dehydration of alcohol, ease of dehydration, acid catalysis, reversibility, orientation.

7. Electrophillicandfreeradicalsaddition:Reactionsatcarbon-carbon,doublebond,electrophile,hydrogenation,heatofhydrogenationandstabilityofalkenes,markownikoffrule,additionofhydrogenhalides, addition of hydrogen bromides, peroxide effect, electrophillic addition, mechanism, rearrangement, absence of hydrogen exchange, orientation and reactivity, addition of halogen, mechanism, halohydrin formation, mechanism of free radicals addition, mechanism of peroxide initiated addition ofhydrogenbromide, orientationoffreeaddition,additionsofcarbenetoalkene, cycloadditionreaction.

9. Theory of resonance: Allyl radical as a resonance hybrid, stability, orbital picture, resonance stabilization of allyl radicals, hyper conjugation, allyl cation as a resonance hybrid, nucleophilic substitution in allylic substrate, SN1 reactivity, allylic rearrangement, resonance stabilization of allyl cation, hyper conjugation, nucleophilic substitution in allylic substrate, SN2 nucleophilic substitution in vinylic substrate, vinylic cation, stability of conjugated dienes, resonance in alkenes, hyper conjugation, ease of formation ofconjugateddienes, orientationofelimination, electrophilicadditiontoconjugateddienes, 1,4-addition, 1,2-versus1,4-addition, rateversus equilibrium, orientationandreactivityoffree radicaladditionto conjugateddienes.

10. Electrophilicaromaticsubstitution:Effectofsubstituentgroups,determinationoforientation,determinationofrelativereactivity, classificationofsubstituentgroup, mechanism of nitration, sulphonation,
halogenation, friedel craft alkylation, friedel craft acylation, reactivity and orientation, activating and
deaactivating O,P,M directing groups, electron release via resonance, effect of halogen on electrophilic
aromatic substitution in alkyl benzene, side chain halogination of alkyl benzene, resonance stabiliza-
tion of benzyl radical.

11 Nucleophilic addition reaction: Mechanism, ionisation of carboxylic acids, acidity constants, acidity
of acids, structure of carboxylate ions, effect of substituent on acidity, nucleophilic acyl substitution
reaction, conversion of acid to acid chloride, esters, amide and anhydride. Role of carboxyl group, compar-
ison of alkyl nucleophilic substitution with acyl nucleophilic substitution.

12 Mechanism of aldol condensation, claisen condensation, cannizzaro reaction, crossed aldol condens-
sation, crossed cannizzaro reaction, benzoin condensation, perkin condensation. Knoevenagel, Reform-
matsky reaction, Wittig reaction, Michael addition.

13 Hoffman rearrangement: Migration to electron deficient nitrogen, Sandmeyer’s reaction, basicity of
amines, diazotisation and coupling, acidity of phenols, Williamson synthesis, Fries rearrangement,
Kolbe reaction, Reimer tieman’s reactions.

14 Nucleophilic aromatic substitution: Bimolecular displacement mechanisms, orientation, comparison
of aliphatic nucleophilic substitution with that of aromatic.

15 Oxidation reduction reaction.

16 Study of the following official compounds- preparation, test for purity, assay and medicinal uses of
Chlorbutol, Dimercaprol, Glycerol trinitrate, Urea, Ethylene diamine dihydrate, Vanillin, Paraldehyde,
Ethylene chloride, Lactic acid, Tartaric acid, citric acid, salicylic acid, aspirin, methyl salicylate, ethyl
benzoate, benzylbenzoate, dimethyl phthalate, sodium laurylsulphate, saccharin sodium, mephrins.

PHARMACEUTICAL ORGANIC CHEMISTRY (PRACTICAL)

Practical : 3 Hrs./Week

1. Introduction to the various laboratory techniques through demonstration involving synthesis of the
following compounds (at least 8 compounds to be synthesised):

1. Acetanilide / aspirin (Acetylation)
2. Benzanilide / Phenyl benzoate (Benzoylation)
3. P-bromo acetanilide / 2,4,6 – tribromo aniline (Bromination)
4. Dibenzylidene acetone (Condensation)
5. 1-Phenylazo-2-naphthol (Diazotisation and coupling)
6. Benzoic acid / salicylic acid (Hydrolysis of ester)
7. M-dinitro benzene (Nitration)
8. 9,10–Anthraquinone (Oxidation of anthracene) / preparation of benzoic acid from toluene or benz-
aldehyde
9. M-phenylene diamine (Reduction of M-dinitrobenzene) / Aniline from nitrobenzene
10. Benzophenone oxime
11. Nitration of salicylic acid
12. Preparation of picric acid
13. Preparation of O-chlorobenzoic acid from O-chlorotoluene

14. Preparation of cyclohexanone from cyclohexanol

II. Identification of organic compounds belonging to the following classes by:

Systematic qualitative organic analysis including preparation of derivatives Phenols, amides, carbohydrates, amines, carboxylic acids, aldehyde and ketones, Alcohols, esters, hydrocarbons, anilides, nitrocompounds.

III. Introduction to the use of stereomodels:

Methane, Ethane, Ethylene, Acetylene, Cis alkene, Trans alkene, inversion of configuration.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).

PHARMACEUTICAL INORGANIC CHEMISTRY (THEORY)

Theory: 2 Hrs./Week

1. **Scope and objectives:** This course mainly deals with fundamentals of Analytical chemistry and also the study of inorganic pharmaceuticals regarding their monographs and also the course deals with basic knowledge of analysis of various pharmaceuticals.

2. **Upon completion of the course student shall be able to:**
 a. understand the principles and procedures of analysis of drugs and also regarding the application of inorganic pharmaceuticals;
 b. know the analysis of the inorganic pharmaceuticals their applications; and
 c. appreciate the importance of inorganic pharmaceuticals in preventing and curing the disease.

3. **Course materials:**

 Text books
 a. A text book Inorganic medicinal chemistry by Surendra N. Pandeya
 b. A. H. Beckett and J. B. Stanlake’s Practical Pharmaceutical chemistry Vol-I & Vol-II

 Reference books
 a. Inorganic Pharmaceutical Chemistry by Anand & Chetwal
b. Pharmaceutical Inorganic chemistry by Dr.B.G.Nagavi

c. Analytical chemistry principles by John H.Kennedy

d. I.P.1985 and 1996, Govt. of India, Ministry of health

4. Lecture

wise programme: Topics

1. Errors
2. Volumetric analysis
3. Acid-base titrations
4. Redox titrations
5. Non aqueous titrations
6. Precipitation titrations
7. Complexometric titrations
8. Theory of indicators
9. Gravimetry
10. Limit tests
11. Medicinal gases
12. Acidifiers
13. Antacids
14. Cathartics
15. Electrolyte replenishers
16. Essential Trace elements
17. Antimicrobials
18. Pharmaceutical aids
19. Dental products
20. Miscellaneous compounds
21. Radio Pharmaceuticals
1. **Limit test (6 exercises)**

a. Limit test for chlorides
b. Limit test for sulphates
c. Limit test for iron
d. Limit test for heavy metals
e. Limit test for arsenic
f. Modified limit tests for chlorides and sulphates

2. **Assays (10 exercises)**

a. Ammonium chloride - Acid-base titration
b. Ferrous sulphate - Cerimetry
c. Copper sulphate - Iodometry
d. Calciugluconate - Complexometry
e. Hydrogen peroxide - Permanganometry
f. Sodium benzoate - Nonaqueous titration
g. Sodium chloride - Modified volhard’s method
h. Assay of KI – KIO3 titration
i. Gravimetric estimation of barium as barium sulphate
j. Sodium antimony gluconate or antimony potassium tartarate

3. **Estimation of mixture (Any two exercises)**

a. Sodium hydroxide and sodium carbonate
b. Boric acid and Borax
c. Oxalic acid and sodium oxalate

4. **Test for identity (Any three exercises)**

a. Sodium bicarbonate
b. Barium sulphate
c. Ferrous sulphate
d. Potassium chloride

5. **Test for purity (Any two exercises)**

a. Swelling power in Bentonite
b. Acid neutralising capacity in aluminium hydroxidegel

c. Ammonium salts in potashalum

d. Adsorption power heavy Kaolin

e. Presence of Iodates in KI

6. Preparations (Any two exercises)

 a. Boric acids
 b. Potashalum
 c. Calcium lactate
 d. Magnesium sulfate

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).

REMEDIAL MATHEMATICS/BIOLOGY (THEORY)

Theory : 3 Hrs. /Week

REMEDIAL MATHEMATICS :

1. **Scope and objectives:** This is an introductory course in mathematics. This subject deals with the introduction to matrices, determinants, trigonometry, analytical geometry, differential calculus, integral calculus, differential equations, laplace transform.

2. **Upon completion of the course the student shall be able to :—**

 a. Know Trigonometry, Analytical geometry, Matrices, Determinant, Integration, Differential equation, Laplace transform and their applications;
 b. solve the problems of different types by applying theory; and
 c. appreciate the important applications of mathematics in pharmacy.

3. **Course materials:**

 Text books

 a. Differential calculus By Shantinarayan
 b. Text book of Mathematics for second year pre-university by Prof. B. M. Sreenivas
Reference books
a. Integral calculus By Shanthinarayan
b. Engineering mathematics By B.S. Grewal
c. Trigonometry Part-I By S.L. Loney

4. Lecture wise programme:

Topics

1. **Algebra**: Determinants, Matrices
2. **Trigonometry**: Sides and angles of a triangle, solution of triangles
3. **Analytical Geometry**: Points, Straight line, circle, parabola
4. **Differential calculus**: Limit of a function, Differential calculus, Differentiation of a sum, Product, Quotient, Composite, Parametric, exponential, trigonometric and logarithmic function. Successive differentiation, Leibnitz’s theorem, Partial differentiation, Euler’s theorem on homogeneous functions of two variables
5. **Integral Calculus**: Definite integrals, integration by substitution and by parts, Properties of definite integrals.
6. **Differential equations**: Definition, order, degree, variable separable, homogeneous, Linear, heterogeneous, linear, differential equation with constant coefficient, simultaneous linear equation of second order.
7. **Laplace transform**: Definition, Laplace transform of elementary functions, Properties of linearity and shifting.

BIOLOGY :

1. **Scope and objectives**: This is an introductory course in Biology, which gives detailed study of natural sources such as plant and animal origin. This subject has been introduces to the pharmacy course in order to make the student aware of various naturally occurring drugs and its history, sources, classification, distribution and the characters of the plants and animals. This subject gives basic foundation to Pharmacognosy.

2. **Course materials**:

 Text books
 a. Text book of Biology by S.B. Gokhale
 b. A Text book of Biology by Dr. Thulajappa and Dr. Seetaram.

 Reference books
 a. A Text book of Biology by B.V. Sreenivasa Naidu
 b. A Text book of Biology by Naidu and Murthy
 c. Botany for Degree students By A.C. Dutta.
 d. Outlines of Zoology by M. Ekambaranatha ayyer and T.N. Ananthakrishnan.
3. Lecture wise programme:

PART – A

01 Introduction
02 General organization of plants and its inclusions

Plant tissues

04 Plant kingdom and its classification
05 Morphology of plants
06 Root, Stem, Leaf and Its modifications
07 Inflorescence and Pollination of flowers
08 Morphology of fruits and seeds
09 Plant physiology
10 Taxonomy of Leguminosae, umbelliferae, Solanaceae, Lilliaceae, Zinziberaceae, Rubiaceae
11 Study of Fungi, Yeast, Penicillin and Bacteria

PART-B

01 Study of Animal cell
02 Study animal tissues
03 Detailed study of frog
04 Study of Pisces, Reptiles, Aves
05 General organization of mammals
06 Study of poisonous animals
1.6 BIOLOGY (PRACTICAL)

Practical : 3 Hrs./Week

Title

1. Introduction of biology experiments
2. Study of cell wall constituents and cell inclusions
3. Study of Stem modifications
4. Study of Root modifications
5. Study of Leaf modifications
6. Identification of Fruits and seeds
7. Preparation of Permanentslides
8. T.S. of Senna, Cassia, Ephedra, Podophyllum.
9. Simple plant physiological experiments
10. Identification of animals
11. Detailed study of Frog
12. Computer based tutorials

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
Second year

PATHOPHYSIOLOGY(THEORY)

Theory : 3 Hrs. /Week

1. **Scope of the Subject:** This course is designed to impart a thorough knowledge of the relevant aspects of pathology of various conditions with reference to its pharmacological applications, and understanding of basic pathophysiological mechanisms. Hence it will not only help to study the syllabus of pathology, but also to get baseline knowledge of its application in other subjects of pharmacy.

2. **Objectives of the Subject:** Upon completion of the subject student shall be able to—
 a. describe the etiology and pathogenesis of the selected disease states;
 b. name the signs and symptoms of the diseases; and
 c. mention the complications of the diseases.

Text books (Theory)
 a. Pathologic basis of disease by- Cotran, Kumar, Robbins
 b. Text book of Pathology- Harsh Mohan
 c. Text book of Pathology- Y.M. Bhinde

Reference books (Theory)
 a. Clinical Pharmacy and Therapeutics; Second edition; Roger Walker; Churchill Livingstone publication

3. **Detailed syllabus and lecture wise schedule:**

 Chapter

1. **Basic principles of cell injury and Adaptation**
 a) Causes, Pathogenesis and morphology of cell injury
 b) Abnormalities in lipoproteinemia, glycogen infiltration and glycogen storage diseases

2. **Inflammation**
 a) Pathogenesis of acute inflammation, Chemical mediators in inflammation, Types of chronic inflammation
 b) Repairs of wounds in the skin, factors influencing healing of wounds

3. **Diseases of Immunity**
 a) Introduction to T and B cells
 b) MHC proteins or transplantation antigens
 c) Immunotolerance
 - Hypersensitivity
Hypersensitivity type I, II, III, IV, Biological significance, Allergy due to food, chemicals and drugs

- Autoimmunity

Criteria for autoimmunity, Classifications of autoimmunediseases in man, mechanism of autoimmunity, Transplantation and immunologic tolerance, allograft rejections, transplantation antigens, mechanism of rejection of allograft.

- Acquired immune deficiency syndrome (AIDS)

- Amyloidosis

4 Cancer: differences between benign and malignant tumors, Histological diagnosis of malignancy, invasions and metastasis, patterns of spread, disturbances of growth of cells, classification of tumors, general biology of tumors, spread of malignant tumors, etiology and pathogenesis of cancer.

5 Types of shock, mechanisms, stages and management

6 Biological effects of radiation

7 Environmental and nutritional diseases

i) Air pollution and smoking - SO2, NO, NO2, and CO

ii) Protein calorie malnutrition, vitamins, obesity, pathogenesis of starvation.

8 Pathophysiology of common diseases

a. Parkinsonism

b. Schizophrenia

c. Depression and mania

d. Hypertension,

e. Stroke (ischaemic and hemorrhage)

f. Angina, CCF, Atherosclerosis, Myocardial infarction

g. Diabetes Mellitus

h. Peptic ulcer and inflammatory bowel diseases

i. Cirrhosis and Alcoholic liver diseases

j. Acute and chronic renal failure

k. Asthma and chronic obstructive airway diseases

9 Infectious diseases:

Sexually transmitted diseases (HIV, Syphilis, Gonorrhea), Urinary tract infections, Pneumonia, Typhoid, Tuberculosis, Leprosy, Malaria Dysentery (bacterial and amoebic), Hepatitis - infective hepatitis.

4. Assignments:

 Title of the Experiment

1 Chemical Mediators of inflammation
Drug Hypersensitivity
Cigarette smoking & its ill effects
Biological Effects of Radiation
Etiology and hazards of obesity
Complications of diabetes
Diagnosis of cancer
Disorders of vitamins
Methods in Pathology - Laboratory values of clinical significance
Pathophysiology of Dengue Hemorrhagic Fever (DHF)

Format of the assignment

1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year
4. It shall be computer draft copy.
5. Name and signature of the student
6. Time allocated for presentation may be 8+2 Min.

PHARMACEUTICAL MICROBIOLOGY (THEORY)

Theory: 3 Hrs. /Week

1. **Scope of the Subject:** Microbiology has always been an essential component of pharmacy curriculum. This is because of the relevance of microbiology to pharmaceutical sciences and more specifically to pharmaceutical industry. Pharmaceutical biotechnology is the logical extension of pharmaceutical microbiology, which is expected to change the complete drug product scenario in the future.

 This course deals with the various aspects of microorganisms, its classification, morphology, laboratory cultivation, identification, and maintenance. It also discusses the sterilization of pharmaceutical products, equipment, media etc. The course further discusses the immunological preparations, diseases, its transmission, diagnosis, control, and immunological tests.

2. **Objectives of the Subject:**

 Upon completion of the subject student shall be able to –
 a. know the anatomy, identification, growth factors and sterilization of microorganisms;
 b. know the mode of transmission of disease causing microorganism, symptoms of disease, and treatment aspect;
 c. do estimation of RNA and DNA and there by identifying the source;
 d. do cultivation and identification of the microorganisms in the laboratory;
e. do identification of diseases by performing the diagnostic tests; and
f. appreciate the behavior of motility and behavioral characteristics of microorganisms.

Text books (Theory)

b. Mary Louis Turgeon “Immunology and Serology in Laboratory Medicines”

Reference books (Theory)

b. Rawlins E.A.”Bentley’s Text Book of Pharmaceutics” Bailliere Tindals 24-28 London 1988
f. Pharmacopoeia of India, Govt of India, 1996.

3. **Detailed syllabus and lecture wise schedule:**

Title of the topic

1. Introduction to the science of microbiology. Major divisions of microbial world and relationship among them.
2. Different methods of classification of microbes and study of Bacteria, Fungi, virus, Rickettsiae, Spirochetes.
3. Nutritional requirements, growth and cultivation of bacteria and virus. Study of different important media required for the growth of aerobic and anaerobic bacteria & fungi. Differential media, enriched media and selective media, maintenance of laboratory cultures.
4. Different methods used in isolation and identification of bacteria with emphasis on different staining techniques and biochemical reactions. Counting of bacteria - Total and Viable counting techniques.
5. Detailed study of different methods of sterilization including their merits and demerits. Sterilization methods for all pharmaceutical products. Detailed study of sterility testing of different pharmaceutical preparations. Brief information on Validation.
8. Diagnostic tests: Schick’s Test, Elisa Test, Western Blot Test, Southern Blot PCR, Widal, QBC, Mantoux
Peripheral smear. Study of malarial parasite.

10 Study of infectious diseases: Typhoid, Tuberculosis, Malaria, Cholera, Hepatitis, Meningitis, Syphilis & Gonorrhea and HIV.

PHARMACEUTICAL MICROBIOLOGY (PRACTICAL)

Practical : 3 Hrs./Week

Title of the Experiment:

1 Study of apparatus used in experimental microbiology*.
2 Sterilisation of glass ware’s. Preparation of media and sterilisation.*
3 Staining techniques – Simple staining ; Gram’s staining ; Negativestaining**
4 Study of motility characters*.
5 Enumeration of micro-organisms (Total and Viable)*
6 Study of the methods of isolation of pure culture.*
7 Biochemical testing for the identification of microorganisms.*
8 Cultural sensitivity testing for some micro-organisms.*
9 Sterility testing for powders and liquids.*
10 Determination of minimum inhibitory concentration.*
11 Microbiological assay of antibiotics by cup plate method.*
12 Microbiological assay of vitamins by Turbidometric method**
13 Determination of RWC.**
14 Diagnostic tests for some common diseases, Widal, malarial parasite.**

* Indicate minor experiment & ** indicate major experiment

Assignments:

1 Visit to some pathological laboratories & study the activities and equipment/instruments used and reporting the same.
2. Visit to milk dairies (Pasteurization) and microbial laboratories (other sterilization methods) & study the activities and equipment/instruments used and reporting the same.
3. Library assignments
 a. Report of recent microbial techniques developed in diagnosing some common diseases.
 b. Latest advancement in identifying, cultivating & handling of microorganisms.
Format of the assignment:
1. Minimum & Maximum number of pages.
2. It shall be computer draft copy.
3. Reference(s) shall be included at the end.
4. Name and signature of the student.
5. Assignment can be a combined presentation at the end of the academic year.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).

PHARMACOGNOSY & PHYTOPHARMACEUTICALS (THEORY)

Theory: 3 Hrs./Week

1. **Scope and objectives:** This subject has been introduced for the pharmacy course in order to make the student aware of medicinal uses of various naturally occurring drugs, its history, sources, distribution, method of cultivation, active constituents, medicinal uses, identification tests, preservation methods, substitutes and adulterants.

2. **Upon completion of the course student shall be able to:**
 a. understand the basic principles of cultivation, collection and storage of crude drugs;
 b. know the source, active constituents and uses of crude drugs; and
 c. appreciate the applications of primary and secondary metabolites of the plant.

3. **Course materials:**

 Text books

 Reference books
 a. Pharmacognosy by Brady & Tyler E.
 b. Pharmacognosy by T.E. Wallis.
4. **Lecture wise programme:**

Topics

1. Introduction.
2. Definition, history and scope of Pharmacognosy.
3. Classification of crude drugs.
4. Cultivation, collection, processing and storage of crude drugs.
5. Detailed method of cultivation of crude drugs.
6. Study of cell wall constituents and cell inclusions.
7. Microscopical and powder Microscopical study of crude drugs.
8. Study of natural pesticides.
9. Detailed study of various cell constituents.
11. Detailed study carbohydrates containing drugs. (11 drugs)
12. Definition sources, method extraction, chemistry and method of analysis of lipids.

Study of plants fibers used in surgical dressings and related products.

Different methods of adulteration of crude drugs.

PHARMACOGNOSY & PHYTOPHARMACEUTICALS (PRACTICAL)

Practical: 3 Hrs./Week

General Requirements: Laboratory Napkin, Observation Book 150 pages, Zero brush, Needle, Blade, Match box.

List of experiments:

1. Introduction of Pharmacognosy laboratory and experiments.
2. Study of cell wall constituents and cell inclusions.
3. Macro, powder and microscopic study of Datura.
4. Macro, powder and microscopic study of Senna.
5. Macro, powder and microscopic study of Cassia cinnamon.
Macro, powder and microscopic study of Cinchona.

Macro, powder and microscopic study of Ephedra.

Macro, powder and microscopic study of Quassia.

Macro, powder and microscopic study of Clove.

Macro, powder and microscopic study of Fennel.

Macro, powder and microscopic study of Coriander.

Macro, powder and microscopic study of Isapgol.

Macro, powder and microscopic study of Nux vomica.

Macro, powder and microscopic study of Rauwolfia.

Macro, powder and microscopic study of Liquorice.

Macro, powder and microscopic study of Ginger.

Macro, powder and microscopic study of Podophyllum.

Determination of Iodine value.

Determination of Saponification value and unsaponifiable matter.

Determination of ester value.

Determination of Acid value.

Chemical tests for Acacia.

Chemical tests for Tragacanth.

Chemical tests for Agar.

Chemical tests for Starch.

Chemical tests for Lipids (castoroil, sesame oil, shark liver oil, beeswax).

Chemical tests for Gelatin.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>07</td>
<td>20</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance.)
PHARMACOLOGY – I(THEORY)

Theory : 3 Hrs./Week

1. Scope of the Subject: This subject will provide an opportunity for the student to learn about the drug with regard to classification, pharmacodynamic and pharmacokinetic aspects, adverse effects, uses, dose, route of administration, precautions, contraindications and interaction with other drugs. In this subject, apart from general pharmacology, drugs acting on autonomic nervous system, cardiovascular system, central nervous system, blood and blood forming agents and renal system will be taught. In addition to theoretical knowledge, the basic practical knowledge relevant to therapeutics will be imparted.

2. Objectives of the Subject: Upon completion of the subject student shall be able to (Know, do, appreciate)—
 a. understand the pharmacological aspects of drugs falling under the abovementioned chapters;
 b. handle and carry out the animal experiments;
 c. appreciate the importance of pharmacology subject as a basis of therapeutics; and
 d. correlate and apply the knowledge therapeutically.

Text books (Theory) (Author, Title, Edition, Publication Place, Publisher, Year of Publication)

Reference books (Theory) (Author, Title, Edition, Publication Place, Publisher, Publication Year)

Text books (Practical):

Reference books (Practical)

3. **Detailed syllabus and lecture wise schedule:**

Title of the topic

1. **General Pharmacology**
 a) Introduction, definitions and scope of pharmacology
 b) Routes of administration of drugs
 c) Pharmacokinetics (absorption, distribution, metabolism and excretion)
 d) Pharmacodynamics
 e) Factors modifying drug effects
 f) Drug toxicity - Acute, sub-acute and chronic toxicity.
 g) Pre-clinical evaluations
 h) Drug interactions

Note: The term Pharmacology used here refers to the classification, mechanism of action, pharmacokinetics, pharmacodynamics, adverse effects, contraindications, therapeutic uses, interactions and dose and route of administration.

2. **Pharmacology of drugs acting on ANS**
 a) Adrenergic and antiadrenergic drugs
 b) Cholinergic and anticholinergic drugs
 c) Neuromuscular blockers
 d) Mydriatics and miotics
 e) Drugs used in myastheniagravis
 f) Drugs used in Parkinsonism

3. **Pharmacology of drugs acting on cardiovascular system**
 a) Antihypertensives
 b) Anti-anginal drugs
 c) Anti-arrhythmic drugs
 d) Drugs used for therapy of Congestive Heart Failure
 e) Drugs used for hyperlipidaemias

4. **Pharmacology of drugs acting on Central Nervous System**
 a) General anaesthetics
 b) Sedatives and hypnotics
 c) Anticonvulsants
d) Analgesic and anti-inflammatory agents

e) Psychotropic drugs

f) Alcohol and methyl alcohol

g) CNS stimulants and cognition enhancers

h) Pharmacology of local anaesthetics

5. Pharmacology of Drugs acting on Respiratory tract

a) Bronchodilators

b) Mucolytics

c) Expectorants

d) Antitussives

e) Nasal Decongestants

6. Pharmacology of Hormones and Hormone antagonists

a) Thyroid and Antithyroid drugs

b) Insulin, Insulin analogues and oral hypoglycemic agents

c) Sex hormones and oral contraceptives

d) Oxytocin and other stimulants and relaxants

7. Pharmacology of autocoids and their antagonists

a) Histamines and Antihistaminics

b) 5-Hydroxytryptamine and its antagonists

c) Lipid derived autocoids and platelet activating factor

COMMUNITY PHARMACY (THEORY)

Theory: 2 Hrs./Week

1. Scope: In the changing scenario of pharmacy practice in India, Community Pharmacists are expected to offer various pharmaceutical care services. In order to meet this demand, students will be learning various skills such as dispensing of drugs, responding to minor ailments by providing suitable medication, patient counselling, health screening services for improved patient care in the community set up.

2. Objectives: Upon completion of the course, the student shall be able to–

a. know pharmaceutical care services;

b. know the business and professional practice management skills in community pharmacies;

c. do patient counselling and provide health screenings services to public in community pharmacy;

d. respond to minor ailments and provide appropriate medication;
e. show empathy and sympathy to patients; and
f. appreciate the concept of Rational drug therapy.

Text Books:

a. Health Education and Community Pharmacy by N.S. Parmar.
b. WHO consultative group report.

Reference books:

Special requirements:

1. Either the college is having model community pharmacy (meeting the schedule N requirement) or sign MoU with at least 4-5 community pharmacies nearby to the college for training the students on dispensing and counselling activities.

2. Special equipments like B.P apparatus, Glucometer, Peak flow meter, and apparatus for cholesterol estimation.

3. Scheme of evaluation (80 Marks)

 1. Synopsis 10
 2. Major Experiment 30
 (Counselling of patients with specific diseases – emphasis should be given on counselling introduction, content, process and conclusion)
 3. Minor Experiment (Ability to measure B.P/ CBG/ Lung function) 15
 4. Prescription Analysis (Analyzing the prescriptions for probable drug interaction and ability to tell the management) 15
 5. Viva–Voce 10

4. Lecture wise programme:

Topics

1 Definition, scope, of community pharmacy
 Roles and responsibilities of Community pharmacist

2 Community Pharmacy Management
 a) Selection of site, Space layout, and design
 b) Staff, Materials- coding, stocking
 c) Legal requirements
 d) Maintenance of various registers
e) Use of Computers: Business and health care softwares

3 Prescriptions – parts of prescription, legality & identification of medication related problems like drug interactions.

4 Inventory control in community pharmacy
 Definition, various methods of Inventory Control
 ABC, VED, EOQ, Lead time, safety stock

5 Pharmaceutical care
 Definition and Principles of Pharmaceutical care.

6 Patient counselling
 Definition, outcomes, various stages, barriers, Strategies to overcome barriers
 Patient information leaflets - content, design, & layouts, advisory labels

7 Patient medication adherence
 Definition, Factors affecting medication adherence, role of pharmacist in improving the adherence.

8 Health screenings services
 Definition, importance, methods for screening
 Blood pressure/ blood sugar/ lung function and
 Cholesterol testing

9 OTC Medication- Definition, OTC medication list & Counselling

10 Health Education
 WHO Definition of health, and health promotion, care for children, pregnant & breastfeeding women, and geriatric patients. Commonly occurring Communicable Diseases, causative agents,
 Clinical presentations and prevention of communicable diseases – Tuberculosis, Hepatitis, Typhoid, Amoebiasis, Malaria, Leprosy,
 Syphilis, Gonorrhea and AIDS
 Balance diet, and treatment & prevention of deficiency disorders Family planning – role of pharmacist

11 Responding to symptoms of minor ailments
 Relevant pathophysiology, common drug therapy to, Pain, GI disturbances (Nausea, Vomiting, Dyspepsia, diarrhea, constipation), Pyrexia, Ophthalmic symptoms, worms infestations.

12 Essential Drugs concept and Rational Drug Therapy
 Role of community pharmacist

13 Code of ethics for community pharmacists
PHARMACOTHERAPEUTICS - I(THEORY)

Theory: 3 Hrs./Week

1. **Scope of the Subject:** This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives:** At completion of this subject, it is expected that students will be able to understand–
 a. the pathophysiology of selected disease states and the rationale for drug therapy;
 b. the therapeutic approach to management of these diseases;
 c. the controversies in drug therapy;
 d. the importance of preparation of individualized therapeutic plans based on diagnosis;
 e. need to identify the patient-specific parameters relevant in initiating drug therapy and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects);
 f. describe the pathophysiology of selected disease states and explain the rationale for drug therapy;
 g. summarize the therapeutic approach to management of these diseases including reference to the latest available evidence;
 h. discuss the controversies in drug therapy;
 i. discuss the preparation of individualized therapeutic plans based on diagnosis;
 j. identify the patient-specific parameters relevant in initiating drug therapy and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text Books

Reference Books
 a. Pathologic basis of disease - Robins SL, W.B. Saunders publication.
 b. Pathology and therapeutics for Pharmacists: A Basis for Clinical Pharmacy Practice - Green and Harris, Chapman and Hall publication.
 d. Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA
 f. Relevant review articles from recent medical and pharmaceutical literature.
3. Detailed syllabus and lecture wise schedule:

Etiopathogenesis and pharmacotherapy of diseases associated with following systems/ diseases

Title of the topic

1. Cardiovascular system: Hypertension, Congestive cardiac failure, Angina Pectoris, Myocardial infarction, Hyperlipidaemias, Electrophysiology of heart and Arrhythmias

2. Respiratory system: Introduction to Pulmonary function test, Asthma, Chronic obstructive airways disease, Drug induced pulmonary diseases

3. Endocrine system: Diabetes, Thyroid diseases, Oral contraceptives, Hormone replacement therapy, Osteoporosis

3. General prescribing guidelines for
 a. Paediatric patients
 b. Geriatric patients
 c. Pregnancy and breastfeeding

4. Ophthalmology: Glaucoma, Conjunctivitis- viral & bacterial

5. Introduction to rational drug use
 Definition, Role of pharmacist Essential drug concept Rational drug formulations

2.6 PHARMACOTHERAPEUTICS - I (PRACTICAL)

Practical: 3 Hrs./Week

Practicals:
Hospital postings in various departments designed to complement the lectures by providing practical clinical discussion; attending ward rounds; follow up the progress and changes made in drug therapy in allotted patients; case presentation upon discharge. Students are required to maintain a record of cases presented and the same should be submitted at the end of the course for evaluation. A minimum of 20 cases should be presented and recorded covering most common diseases.

Assignments:
Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.

Format of the assignment:
1. Minimum & Maximum number of pages.
2. Reference (s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2 Min.
Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance.

Third Year

3.1 PHARMACOLOGY – II (THEORY)

Theory: 3 Hrs./Week

1. Scope of the Subject: This subject will provide an opportunity for the student to learn about the drug with regard to classification, pharmacodynamic and pharmacokinetic aspects, adverse effects, uses, dose, route of administration, precautions, contraindications and interaction with other drugs. In this subject, drugs acting on autacoids, respiratory system, GIT, immune system and hormones, and pharmacology of autacoids and hormones will be concentrated. In addition, pharmacology of therapeutic agents, vitamins, essential minerals and principles of toxicology are also taught. In addition to theoretical knowledge, the basic practical knowledge relevant to therapeutics will be imparted.

2. Objectives of the Subject: Upon completion of the subject student shall be able to:
 a. understand the pharmacological aspects of drugs falling under the abovementioned chapters,
 b. carry out the animal experiments confidently,
 c. appreciate the importance of pharmacology subject as a basis of therapeutics, and
 d. correlate and apply the knowledge therapeutically.

Text books (Theory)

Reference books (Theory)

Text books (Practical)

Reference books (Practical):

3. Detailed syllabus and lecture wise schedule:

Title of the topic
1. Pharmacology of Drugs acting on Blood and blood forming agents
 a) Anticoagulants
 b) Thrombolytics and antiplatelet agents
 c) Haemopoietics and plasma expanders

2. Pharmacology of drugs acting on Renal System
 a) Diuretics
 b) Antidiuretics

3. Chemotherapy
 a) Introduction
 b) Sulfonamides and co-trimoxazole
 c) Penicillins and Cephalosporins
 d) Tetracyclins and Chloramphenicol
 e) Macrolides, Aminoglycosides, Polyene & Polypeptide antibiotics
 f) Quinolines and Fluoroquinolines
 g) Antifungal antibiotics
 h) Antiviral agents
 i) Chemotherapy of tuberculosis and leprosy
 j) Chemotherapy of Malaria
k) Chemotherapy of protozoal infections (amoebiasis, Giardiasis)
l) Pharmacology of Anthelmintic drugs
m) Chemotherapy of cancer (Neoplasms)

4 Immunopharmacology
Pharmacology of immunosuppressants and stimulants

5. Principles of Animal Toxicology
Acute, sub acute and chronic toxicity

6. The dynamic cell: The structures and functions of the components of the cell
 a) Cell and macromolecules: Cellular classification, subcellular organelles, macromolecules, large macromolecular assemblies
 b) Chromosome structure: Pro and eukaryotic chromosome structures, chromatin structure, genome complexity, the flow of genetic information.
 c) DNA replication: General, bacterial and eukaryotic DNA replication.
 d) The cell cycle: Restriction point, cell cycle regulators and modifiers.
 e) Cell signaling: Communication between cells and their environment, ion channels, signal transduction pathways (MAP kinase, P38 kinase, JNK, Ras and PI3-kinase pathways, biosensors.

The Gene: Genome structure and function:
 a) Gene structure: Organization and elucidation of genetic code.
 b) Gene expression: Expression systems (pro and eukaryotic), genetic elements that control gene expression (nucleosomes, histones, acetylation, HDACs, DNA binding protein families.
 c) Transcription and transcription factors: Basic principles of transcription in pro and eukaryotes.

RNA processing: rRNA, tRNA and mRNA processing.
Protein synthesis: Mechanisms of protein synthesis, initiation in eukaryotes, translation control and post-translational events
Altered gene functions: Mutations, deletions, amplifications, LOH, translocations, trinucleotide repeats and other genetic abnormalities. Oncogenes and tumor suppressor genes.
The gene sequencing, mapping and cloning of human disease genes.
Introduction to gene therapy and targeting.
Recombinant DNA technology: principles. Processes (gene transfer technology) and applications

Books:
PHARMACOLOGY – II (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments:

2. Study of physiological salt solutions used in experimental pharmacology.
3. Study of laboratory appliances used in experimental pharmacology.
4. Study of use of anesthetics in laboratory animals.
5. To record the dose response curve of Ach using isolated ileum/rectus abdominis muscle preparation.
6. To carry out bioassay of Ach using isolated ileum/rectus abdominis muscle preparation by interpolation method.
7. To carry out bioassay of Ach using isolated ileum/rectus abdominis muscle preparation by three point method.
8. To record the dose response curve of Histamine using isolated guinea-pig ileum preparation.
10. To carry out bioassay of Histamine using isolated guinea-pig ileum preparation by interpolation method.
11. To carry out bioassay of Histamine using guinea-pig ileum preparation by three point method.
12. To study the routes of administration of drugs in animals (Rats, Mice, Rabbits).
13. Study of theory, principle, procedure involved and interpretation of given results for the following experiments:
 a) Analgesic property of drug using analgesiometer.
 b) Anti-inflammatory effect of drugs using rat-paw edema method.
 c) Anticonvulsant activity of drugs using maximalelectroshock and pentylenetetrazole methods.
 d) Antidepressant activity of drugs using poleclimbing apparatus and pentobarbitone induced sleeping time methods.
 e) Locomotor activity evaluation of drugs using actophotometer and rotorod.
 f) Cardiotonic activity of drugs using isolated frog heart and mammalian heart preparations.
Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>02</td>
<td>10</td>
</tr>
<tr>
<td>Synopsis</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Major Experiment (Bioassay)</td>
<td>08</td>
<td>30</td>
</tr>
<tr>
<td>Minor Experiment (Interpretation of given Graph or simulated experiment)</td>
<td>04</td>
<td>10</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>10</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>3hrs</td>
<td>4hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).

PHARMACEUTICAL ANALYSIS (THEORY)

Theory: 3 Hrs./Week

1. **Quality Assurance:**
 a. Introduction, sources of quality variation, control of quality variation.
 b. Concept of statistical quality control.
 c. Validation methods - quality of equipment, validation of equipment and validation of analytical instruments and calibration.
 d. GLP, ISO9000.
 e. Total quality management, quality review and documentation.
 f. ICH - international conference for harmonization-guidelines.
 g. Regulatory control.

2. **Chromatography:**
 Introduction, history, classification, separation techniques, choice of methods. The following techniques are discussed with relevant examples of pharmaceutical products involving principles and techniques of separation of drugs from excipients.
 a. **Column Chromatography:** Adsorption column chromatography, Operational technique, frontal analysis and elution analysis. Factors affecting column efficiency, applications and partition chromatography.
 b. **TLC:** Introduction, principle, techniques, Rf value and applications.
 c. **PC:** Introduction, principle, types of paper chromatography, preparation techniques, development techniques, applications.
 d. **Ion-exchange chromatography:** Introduction, principles, types of ion exchange synthetic resins, physical properties, factors affecting ion exchange, methodology and applications.
 e. **HPLC:** Introduction, theory, instrumentation, and applications.
 f. **HPTLC:** Introduction, theory, instrumentation, and applications.
g. **Gas Chromatography:** Introduction, theory, instrumentation-carrier gases, types of columns, stationary phases in GLC&GSC. Detectors-Flame ionization detectors, electron capture detector, thermal conductivity detector. Typical gas chromatogram, derivatization techniques, programmed temperature gas chromatography, applications.

h. **Electrophoresis:** Principles of separation, equipment for paper and gel electrophoresis, and application.

i. **Gel filtration and affinity chromatography:** Introduction, technique, applications.

3. **Electrometric Methods:**

Theoretical aspects, instrumentation, interpretation of data/spectra and analytical applications be discussed on the following topics.

a. **Potentiometry:** Electrical potential, electrochemical cell, reference electrodes, indicator electrodes, measurement of potential and pH, construction and working of electrodes, potentiometric titrations, methods of detecting end point, Karl Fischertitration.

b. **Conductometry:** Introduction, conductivity cell, conductometric titrations and applications.

c. **Polarography:** Instrumentation, DME, residual current, diffusion current and limiting current, polarographic wave, Ilkovic’s equation, Effect of oxygen on polarographic wave, Polarographic maxima and suppressors and applications.

d. **Amperometric Titrations:** Introduction, types of electrodes used, reference and indicator electrode, instrumentation, titration procedure, advantages and disadvantages of Amperometry over potentiometry. Pharmaapplications.

4. **Spectroscopy:**

Theoretical aspects, instrumentation, elements of interpretation of data/spectra and application of analytical techniques be discussed on:

a. **Absorption Spectroscopy:**

- Theory of electronic, atomic and molecular spectra. Fundamental laws of photometry, Beer-Lambert’s Law, application and its deviation, limitation of Beer law, application of the law to single and multiple component analysis, measurement of equilibrium constant and rate constant by spectroscopy. Spectra of isolated chromophores, auxochromes, batho-chromic shift, hypsochromic and hypochromic effect, effect of solvent on absorption spectra, molecular structure and infrared spectra.

 Instrumentation – Photometer, U.V.-Visible spectrophotometer – sources of U.V.-Visible radiations, collimating systems, monochromators, samples cells and following detectors-Photocell, Barrier layer cell, Phototube, Diode array, applications of U.V.-Visible spectroscopy in pharmacy and spectrophotometric titrations.

- **Fluorimetric Analysis:** Theory, luminescence, factors affecting fluorescence, quenching. Instrumentation, Applications, fluorescent indicators, study of pharmaceutically important compounds estimated by fluorimetry.
b. **Flame Photometry**: Theory, nebulisation, flame and flame temperature, interferences, flame spectrometric techniques and instrumentation and pharmaceutical applications.

c. **Atomic Absorption Spectrometry**: Introduction, Theory, types of electrodes, instrumentation and applications.

d. **Atomic Emission Spectroscopy**: Spectroscopic sources, atomic emissions spectrometers, photographic and photoelectric detection.

e. **NMR & ESR (introduction only)**: Introduction, theoretical aspects and applications.

f. **Mass Spectroscopy**: (Introduction only)–Fragmentation, types of ions produced, mass spectrum and applications.

g. **Polarimetry**: (Introduction only)–Introduction to optical rotatory dispersion, circular dichroism, polarimeter.

h. **X-RAY Diffraction**: (Introduction only)–Theory, reciprocal lattice concept, diffraction patterns and applications.

i. **Thermal Analysis**: Introduction, instrumentation, applications, and DSC and DTA.

PHARMACEUTICAL ANALYSIS (PRACTICAL)

Practical: 3 Hrs./Week

List of Experiments:

2. Separation and identification of Sulpha drugs by TLC technique.
3. Effect of pH and solvent on the UV spectrum of given compound.
4. Comparison of the UV spectrum of a compound with that of its derivatives.
5. Determination of dissociation constant of indicators using UV-Visible spectroscopy.
6. Conductometric titration of mixture of acids with a strong base.
7. Potentiometric titration of an acid with a strong base.
8. Estimation of drugs by Fluorimetric technique.
9. Study of quenching effect in fluorimetry.
11. Simultaneous estimation of two drugs present in given formulation.
12. Assay of Salicylic Acid by colourimetry.
17. Comparison of the IR spectrum of a compound with that of its derivatives.
18. Demonstration of HPLC.
19. Demonstration of HPTLC.
20. Demonstration of GC-MS.
21. Demonstration of DSC.
22. Interpretation of NMR spectra of any one compound.

Reference Books:

5. Instrumental Analysis by Willard and Merritt, EWP, East West Press Ltd., Delhi/Madras.
6. Pharm Analysis by Skoog and West, Sounders Manipal College Publishing.
14. TLC by Stahl, Spring Verlay.
18. BPC- Dept. of Health, U.K. for HMSO.
19. USP - Mack Publishing Co., Easton, PA.
PHARMACOTHERAPEUTICS – II(THEORY)

Theory : 3 Hrs./Week

1. **Scope of the Subject:** This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters dealt cover briefly pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives of the Subject** Upon completion of the subject, student shall be able to:
 a. know the pathophysiology of selected disease states and the rationale for drug therapy
 b. know the therapeutic approach to management of these diseases;
 c. know the controversies in drug therapy;
 d. know the importance of preparation of individualized therapeutic plans based on diagnosis; and
 e. appreciate the need to identify the patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text books (Theory)
Clinical Pharmacy and Therapeutics - Roger and Walker, Churchill Livingstone publication

Reference books (Theory)
 b. Clinical Pharmacy and Therapeutics - Eric T. Herfindal, Williams and Wilkins Publication
 c. Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA

3. **Detailed syllabus and lecture wise schedule:**

Etiopathogenesis and pharmacotherapy of diseases associated with following systems/diseases—Title of the topic

1. **Infectious disease:** Guidelines for the rational use of antibiotics and surgical Prophylaxis, Tuberculosis, Meningitis, Respiratory tract infections, Gastroenteritis, Endocarditis, Septicemia, Urinary tract infections, Protozoal infection—Malaria, HIV & Opportunistic infections, Fungal infections, Viral infections, Gonorrhoea and Syphilis

2. **Musculoskeletal disorders**
 Rheumatoid arthritis, Osteoarthritis, Gout, Spondylitis, Systemic lupus erythematosus.

3. **Renal system**
 Acute Renal Failure, Chronic Renal Failure, Renal Dialysis, Drug induced renal disorders

4. **Oncology:** Basic principles of Cancer therapy, General introduction to cancer chemotherapeutic agents, Chemotherapy of breast cancer, leukemia. Management of chemotherapy nausea and anemia

5. **Dermatology:** Psoriasis, Scabies, Eczema, Impetigo
Practicals:

Hospital postings in various departments designed to complement the lectures by providing practical clinical discussion; attending ward rounds; follow up the progress and changes made in drug therapy in allotted patients; case presentation upon discharge. Students are required to maintain a record of cases presented and the same should be submitted at the end of the course for evaluation.

The student shall be trained to understand the principle and practice involved in selection of drug therapy including clinical discussion.

A minimum of 20 cases should be presented and recorded covering most common diseases.

Assignments:

Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.

Format of the assignment:

1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
PHARMACEUTICAL JURISPRUDENCE(THEORY)

Theory : 2 Hrs./Week

1. **Scope of the Subject:** (4-6 lines): This course exposes the student to several important legislations related to the profession of pharmacy in India. The Drugs and Cosmetics Act, along with its amendments are the core of this course. Other acts, which are covered, include the Pharmacy Act, dangerous drugs, medicinal and toilet preparation Act etc. Besides this, the new drug policy, professional ethics, DPCO, patent and design Act will be discussed.

2. **Objectives of the Subject:** Upon completion of the subject, student shall be able to (Know, do, and appreciate)—

 a. practice the Professional ethics;

 b. understand the various concepts of the pharmaceutical legislation in India;

 c. know the various parameters in the Drug and Cosmetic Act and rules;

 d. know the Drug policy, DPCO, Patent and design act;

 e. understand the labeling requirements and packaging guidelines for drugs and cosmetics;

 f. be able to understand the concept of Dangerous Drugs Act, Pharmacy Act, and Excised duties Act; and

 g. other laws as prescribed by the Pharmacy Council of India from time to time including International Laws.

Text books (Theory)

Reference books (Theory)

c. Reports of the Pharmaceutical enquiry Committee

d. I.D.M.A., Mumbai. DPCO1995

e. Various reports of Amendments.

3. **Detailed syllabus and lecture wise schedule:**

Title of the topic

1. **Pharmaceutical Legislations** – A brief review.

2. Principle and Significance of professional ethics. Critical study of the code of pharmaceutical ethics drafted by PCI.
3. **Drugs and Cosmetics Act, 1940, and its rules1945.**

Sales, Import, labeling and packaging of Drugs And Cosmetics Provisions Relating to Indigenous Systems. Constitution and Functions of DTAB, DCC, CDL.

Qualification and duties – Govt. analyst and Drugs Inspector.

4. **Pharmacy Act – 1948.**

Objectives, Legal Definitions, General Study, Constitution and Functions of State & Central Council, Registration & Procedure, ER.

5. **Medicinal and Toilet Preparation Act – 1955.**

Objectives, Legal Definitions, Licensing, Bonded and Non Bonded Laboratory, Ware Housing, Manufacture of Ayurvedic, Homeopathic, Patent & Proprietary Preparations.

7. **Study of Salient Features of Drugs and magic remedies Act and its rules.**

8. **Study of essential Commodities Act Relevant to drugs price control Order.**

9. **Drug Price control Order & National Drug Policy (Current).**

10. **Prevention Of Cruelty to animals Act-1960.**

11. **Patents & design Act-1970.**

12. **Brief study of prescription and Non-prescription Products.**

4. **Assignments:**

 Format of the assignment

 1. Minimum & Maximum number of pages
 2. It shall be a computer draft copy
 3. Reference (s) shall be included at the end.
 4. Name and signature of the student
 5. Assignment can be a combined presentation at the end of the academic year.
 6. Time allocated for presentation may be 8+2 Min

 Case studies relating to

 1. Drugs and Cosmetics Act and rules along with its amendments, Dangerous Drugs Act, Medicinal and Toilet preparation Act, New Drug Policy, Professional Ethics, Drugs (Price control) Order, Patent and Design Act.
 3. Medical and surgical accessories.
 4. Diagnostic aids and appliances available in the market.
MEDICINAL CHEMISTRY (THEORY)

Theory : 3 Hrs./Week

1. Modern concept of rational drug design: A brief introduction to Quantitative Structure Activity Relationship (QSAR), prodrug, combinatorial chemistry and computer aided drug design (CADD) and concept of antisense molecules.

A study of the development of the following classes of drugs including SAR, mechanism of action, synthesis of important compounds, chemical nomenclature, brand names of important marketed products and their side effects.

2. Anti-infective agents
 a) Local anti-infective agents
 b) Preservatives
 c) Antifungal agents
 d) Urinary tract anti-infectives
 e) Antitubercular agents
 f) Antiviral agents and Anti AIDS agents
 g) Antiprotozoal agents
 h) Anthelmentics
 i) Antiscabies and Antipedicular agents

3. Sulphonamides and sulphones

4. Antimalarials

5. Antibiotics

6. Antineoplastic agents

7. Cardiovascular agents
 a) Antihypertensive agents
 b) Antianginal agents and vasodilators
 c) Antiarrhythmic agents
 d) Antihyperlipidemic agents
 e) Coagulants and Anticoagulants
 f) Endocrine

8. Hypoglycemic agents

9. Thyroid and Antithyroid agents

10. Diuretics

11. Diagnostic agents

12. Steroidal Hormones and Adrenocorticoids
MEDICINAL CHEMISTRY (PRACTICAL)

Practical : 3 Hrs/Week

1. Assays of important drugs from the course content.
2. Preparation of medicinally important compounds or intermediates required for synthesis of drugs.
3. Monograph analysis of important drugs.
4. Determination of partition coefficients, dissociation constants, and molar refractivity of compounds for QSAR analysis.

Reference Books:

f. Current Index of Medical Specialities (CIMS) and MIMS India, MIMS, A.E. Morgan Publications (I) Pvt. Ltd, New Delhi-19.

PHARMACEUTICAL FORMULATIONS (THEORY)

Theory : 2 Hrs./Week

1. Scope of the Subject: Scope and objectives of the course: Subject deals with the formulation and evaluation of various pharmaceutical dosage forms.

2. Objectives of the Subject: Upon completion of the subject students shall be able to (Know, do, appreciate) –

 a. understand the principle involved in formulation of various pharmaceutical dosage forms;

 b. prepare various pharmaceutical formulation;

 c. perform evaluation of pharmaceutical dosage forms; and

 d. understand and appreciate the concept of bioavailability and bioequivalence, their roles in clinical situations.
Text books (Theory)

a. Pharmaceutical dosage forms, Vol, I,II and III bylachman
b. Rowlings Text book of Pharmaceutics
c. Tutorial Pharmacy – Cooper & Gun

Reference books (Theory)

a. Remington’s Pharmaceutical Sciences
b. USP/BP/IP

3. Detailed syllabus and lecture wisedchedule:

Title of the topic

1. Pharmaceutical dosage form- concept and classification
2. Tablets: Formulation of different types of tablets, tablet excipients, granulation techniques, quality control and evaluation of tablets. Tablet coating, type of coating, quality control tests for coated tablet.
4. Liquid orals: Formulation and evaluation of suspensions, emulsions and solutions. Stability of these preparations
5. Parenterals: Introduction, containers used for parenterals (including official tests). Formulation of large and small volume parenterals, sterilization
7. Definition and concept of Controlled and novel Drug delivery systems with available examples, viz. parenteral, trans dermal, buccal, rectal, nasal, implants, ocular

3.6 PHARMACEUTICAL FORMULATIONS (PRACTICAL)

Practical : 3 Hrs./Week

List of Experiments:

1. Manufacture of Tablets
 a. Ordinary compressed tablet-wet granulation
 b. Tablets prepared by direct compression.
 c. Soluble tablet.
 d. Chewable tablet.

2. Formulation and filling of hard gelatin capsules

3. Manufacture of parenterals
a. Ascorbic acid injection
b. Calcium gluconate injection
c. Sodium chloride infusion.
d. Dextrose and Sodium chloride injection/infusion.

4. **Evaluation of Pharmaceutical formulations (QC tests)**
 a. Tablets
 b. Capsules
 c. Injections

5. **Formulation of two liquid oral preparations and evaluation by assay**
 a. Solution: Paracetamol Syrup
 b. Antacid suspensions- Aluminum hydroxide gel

6. **Formulation of semisolids and evaluation by assay**
 a. Salicylic acid and benzoic acid ointment
 b. Gel formulation Diclofenac gel

7. **Cosmetic preparations**
 a. Lipsticks
 b. Cold cream and vanishing cream
 c. Clear liquid shampoo
 d. Tooth paste and tooth powders.

8. **Tablet coating**

 (demonstration) Scheme of Practical Examination:

<table>
<thead>
<tr>
<th>Practical Examination</th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

 Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
Fourth Year

4.1 PHARMACOTHERAPEUTICS – III (THEORY)

Theory : 3 Hrs./Week

1. **Scope**: This course is designed to impart knowledge and skills necessary for contribution to quality use of medicines. Chapters deal briefly with pathophysiology and mostly therapeutics of various diseases. This will enable the student to understand the pathophysiology of common diseases and their management.

2. **Objectives**: At completion of this subject it is expected that students will be able to understand–
 a. the pathophysiology of selected disease states and the rationale for drug therapy;
 b. the therapeutic approach to management of these diseases;
 c. the controversies in drug therapy;
 d. the importance of preparation of individualised therapeutic plans based on diagnosis;
 e. need to identify patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects);
 f. describe the pathophysiology of selected disease states and explain the rationale for drug therapy;
 g. to summarise the therapeutic approach to management of these diseases including reference to the latest available evidence;
 h. to discuss the controversies in drug therapy;
 i. to discuss the preparation of individualised therapeutic plans based on diagnosis; and
 j. identify patient-specific parameters relevant in initiating drug therapy, and monitoring therapy (including alternatives, time-course of clinical and laboratory indices of therapeutic response and adverse effects).

Text Books
- a. Clinical Pharmacy and Therapeutics - Roger and Walker, Churchill Livingstone publication

Reference Books
- a. Pathologic basis of disease - Robins SL, W.B. Saunders publication
- b. Pathology and therapeutics for Pharmacists: A Basis for Clinical Pharmacy Practice - Green and Harris, Chapman and Hall publication
- c. Clinical Pharmacy and Therapeutics - Eric T. Herfindal, Williams and Wilkins publication
- d. Applied Therapeutics: The clinical Use of Drugs. Lloyd Young and Koda-Kimble MA
- f. Relevant review articles from recent medical and pharmaceuticall literature.
Etiopathogenesis and pharmacotherapy of diseases associated with following systems/diseases:

Title of the topic

1. **Gastrointestinal System:** Peptic ulcer disease, Gastro Esophageal Reflux Disease, Inflammatory bowel disease, Liver disorders - Alcoholic liver disease, Viral hepatitis including jaundice, and Drug induced liver disorders.
3. **Nervous system:** Epilepsy, Parkinsonism, Stroke, Alzheimer’s disease,
4. **Psychiatry disorders:** Schizophrenia, Affective disorders, Anxiety disorders, Sleep disorders, Obsessive Compulsive disorders
6. Evidence Based Medicine

PHARMACOTHERAPEUTICS – III (PRACTICAL)

Practical : 3 Hrs./Week

Practicals:

Hospital postings for a period of at least 50 hours is required to understand the principles and practice involved in ward round participation and clinical discussion on selection of drug therapy. Students are required to maintain a record of 15 cases observed in the ward and the same should be submitted at the end of the course for evaluation. Each student should present at least two medical cases they have observed and followed in the wards.

Assignments:

Students are required to submit written assignments on the topics given to them. Topics allotted should cover recent developments in drug therapy of various diseases. A minimum of THREE assignments [1500 – 2000 words] should be submitted for evaluation.

Format of the assignment:

1. Minimum & Maximum number of pages
2. Reference (s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year
4. It shall be computer draft copy
5. Name and signature of the student
6. Time allocated for presentation may be 8+2 Min.

Scheme of Practical Examination :

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note : Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
HOSPITAL PHARMACY (THEORY)

Theory : 2 Hrs. /Week

1. **Scope**: In the changing scenario of pharmacy practice in India, for successful practice of Hospital Pharmacy, the students are required to learn various skills like drug distribution, drug dispensing, manufacturing of parenteral preparations, drug information, patient counselling, and therapeutic drug monitoring for improved patient care.

2. **Objectives**: Upon completion of the course, the student shall be able to–
 a. know various drug distribution methods;
 b. know the professional practice management skills in hospital pharmacies;
 c. provide unbiased drug information to the doctors;
 d. know the manufacturing practices of various formulations in hospital setup;
 e. appreciate the practice based research methods; and
 f. appreciate the stores management and inventory control.

Text books: (latest editions)
 a. Hospital pharmacy by William E. Hassan

References:
 a. WHO consultative group report.

3. **Lecture wise programme:**

Topics

1. **Hospital - its Organisation and functions**
2. **Hospital pharmacy - Organisation and management**
 a) Organizational structure-Staff, Infrastructure & work load statistics
 b) Management of materials and finance
 c) Roles & responsibilities of hospital pharmacist
3. **The Budget – Preparation and implementation**
4. **Hospital drug policy**
 a) Pharmacy and Therapeutic committee (PTC)
 b) Hospital formulary
 c) Hospital committees
- Infection committee
- Research and ethical committee
d) developing therapeutic guidelines
e) Hospital pharmacy communication - Newsletter

5 Hospital pharmacy services
a) Procurement & warehousing of drugs and Pharmaceuticals
b) Inventory control
 Definition, various methods of Inventory Control
 ABC, VED, EOQ, Lead time, safety stock
c) Drug distribution in the hospital
 i) Individual prescription method
 ii) Floor stock method
 iii) Unit dose drug distribution method
d) Distribution of Narcotic and other controlled substances
e) Central sterile supply services – Role of pharmacist

6 Manufacture of Pharmaceutical preparations
a) Sterile formulations – large and small volume parenterals
b) Manufacture of Ointments, Liquids, and creams
c) Manufacturing of Tablets, granules, capsules, and powders
d) Total parenteral nutrition

7 Continuing professional development programs
 Education and training

8 Radio Pharmaceuticals – Handling and packaging

9 Professional Relations and practices of hospital pharmacist
HOSPITAL PHARMACY (PRACTICAL)

Practical : 3 Hrs./Week

1. Assessment of drug interactions in the given prescriptions
3. Drug information queries.
4. Inventory control

List of Assignments:

1. Design and Management of Hospital pharmacy department for a 300 bedded hospital.
2. Pharmacy and Therapeutics committee – Organization, functions, and limitations.
3. Development of a hospital formulary for 300 bedded teaching hospital
4. Preparation of ABC analysis of drugs sold in one month from the pharmacy.
5. Different phases of clinical trials with elements to be evaluated.
6. Various sources of drug information and systematic approach to provide unbiased drug information.
7. Evaluation of prescriptions generated in hospital for drug interactions and find out the suitable management.

Special requirements:

1. Each college should sign MoU with nearby local hospital having minimum 150 beds for providing necessary training to the students’ on hospital pharmacy activities.
2. Well equipped with various resources of drug information.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th>Session</th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
1. **Objectives of the Subject:**

Upon completion of the subject student shall be able to (Know, do, appreciate) –

a. monitor drug therapy of patient through medication chart review and clinical review;

b. obtain medication history interview and counsel the patients;

c. identify and resolve drug related problems;

d. detect, assess and monitor adverse drug reaction;

e. interpret selected laboratory results (as monitoring parameters in therapeutics) of specific disease states; and

f. retrieve, analyse, interpret and formulate drug or medicine information.

Text books (Theory)

a. Practice Standards and Definitions - The Society of Hospital Pharmacists of Australia.

b. Basic skills in interpreting laboratory data - Scott LT, American Society of Health System Pharmacists Inc.

d. A text book of Clinical Pharmacy Practice; Essential concepts and skills, Dr. G. Parthasarathi et al, Orient Orient Langram Pvt. Ltd. ISBN 8125026

References

b. Clinical Pharmacokinetics - Rowland and Tozer, Williams and Wilkins Publication.

2. **Detailed syllabus and lecture wise schedule:**

Title of the topic

1. **Definitions, development and scope of clinical pharmacy**

2. **Introduction to daily activities of a clinical pharmacist**

 a. Drug therapy monitoring (medication chart review, clinical review, pharmacist interventions)

 b. Ward round participation

 c. Adverse drug reaction management

 d. Drug information and poisons information

 e. Medication history

 f. Patient counseling
g. Drug utilisation evaluation (DUE) and review (DUR)

h. Quality assurance of clinical pharmacyservices

3. Patient dataanalysis

The patient’s case history, its structure and use in evaluation of drug therapy & Understanding common medical abbreviations and terminologies used in clinical practices.

4. Clinicallaboratorytestsusedintheevaluationofdiseasestates, andinterpretationoftestresults
 a. Haematological, Liver function, Renal function, thyroid functiontests
 b. Tests associated with cardiacdisorders
 c. Fluid and electrolytebalance
 d. Microbiological culture sensitivitytests
 e. Pulmonary FunctionTests

5. Drug & Poisoninformation
 a. Introduction to drug information resourcesavailable
 b. Systematic approach in answering DIqueries
 c. Critical evaluation of drug information andliterature
 d. Preparation of written and verbalreports
 e. Establishing a Drug InformationCentre
 f. Poisons information- organization & informationresources

6. Pharmacovigilance
 a. Scope, definition and aims ofpharmacovigilance
 b. Adversedrugreactions-Classification, mechanism, predisposingfactors, causalityassessment
 [different scalesused]
 c. Reporting, evaluation, monitoring, preventing & management ofADRs
 d. Role of pharmacist in management ofADR.

7. Communication skills, including patient counselling techniques, medication history interview, presentation ofcases.

8. Pharmaceutical careconcepts

9. Critical evaluation of biomedicalliterature

10. Medicationerrors
CLINICAL PHARMACY (PRACTICAL)

Practical : 3 Hrs./Week

Students are expected to perform 15 practicals in the following areas covering the topics dealt in theory class.

a. Answering drug information questions (4Nos)
b. Patient medication counselling (4Nos)
c. Case studies related to laboratory investigations (4Nos)
d. Patient medication history interview (3Nos)

Assignment:

Students are expected to submit THREE written assignments (1500 – 2000 words) on the topics given to them covering the following areas dealt in theory class.

Drug information, Patient medication history interview, Patient medication counselling, Critical appraisal of recently published articles in the biomedical literature which deals with a drug or therapeutic issue.

Format of the assignment:

1. Minimum & Maximum number of pages.
2. Reference(s) shall be included at the end.
3. Assignment can be a combined presentation at the end of the academic year.
4. It shall be computer draft copy.
5. Name and signature of the student.
6. Time allocated for presentation may be 8+2Min.

Scheme of Practical Examination:

<table>
<thead>
<tr>
<th></th>
<th>Sessionals</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>05</td>
<td>15</td>
</tr>
<tr>
<td>Major Experiment</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Minor Experiment</td>
<td>03</td>
<td>15</td>
</tr>
<tr>
<td>Viva</td>
<td>02</td>
<td>15</td>
</tr>
<tr>
<td>Max Marks</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Duration</td>
<td>03 hrs</td>
<td>04 hrs</td>
</tr>
</tbody>
</table>

Note: Total sessional marks is 30 (20 for practical sessional plus 10 marks for regularity, promptness, viva-voce and record maintenance).
BIOSTATISTICS AND RESEARCH METHODOLOGY (THEORY)

Theory : 2 Hrs./Week

1. Detailed syllabus and lecture wise schedule

1 Research Methodology
 a) Types of clinical study designs:
 Case studies, observational studies, interventional studies,
 b) Designing the methodology
 c) Sample size determination and Power of a study
 Determination of sample size for simple comparative experiments, determination of sample size to obtain a confidence interval of specified width, power of a study
 d) Report writing and presentation of data

2 Biostatistics
 a) Introduction
 b) Types of data distribution
 c) Measures describing the central tendency distributions- average, median, mode
 d) Measurement of the spread of data- range, variation of mean, standard deviation, variance, coefficient of variation, standard error of mean.

Datagraphics
Construction and labeling of graphs, histogram, pie charts, scatter plots, semilogarithmic plots

Basics of testing hypothesis
 a) Null hypothesis, level of significance, power of test, P value, statistical estimation of confidence intervals.
 b) Level of significance (Parametric data)- student's t test (paired and unpaired), chi square test, Analysis of Variance (one-way and two-way)
 c) Level of significance (Non-parametric data)- Sign test, Wilcoxon's signed rank test, Wilcoxon rank sum test, Mann Whitney U test, Kruskal-Wallis test (one way ANOVA)
 d) Linear regression and correlation- Introduction, Pearson's and Spearman's correlation and correlation co-efficient.
 e) Introduction to statistical software: SPSS, Epi Info, SAS.

Statistical methods in epidemiology
Incidence and prevalence, relative risk, attributable risk

3. Computer applications in pharmacy

Computer In Community Pharmacy

Computerizing the Prescription Dispensing process

Use of Computers for Pharmaceutical Care in Community Pharmacy

Accounting and General ledgersystem

Drug Information Retrieval & Storage:

Introduction – Advantages of Computerized Literature Retrieval

Use of Computerized Retrieval

Reference books:

4.5 BIOPHARMACEUTICS AND PHARMACOKINETICS (THEORY)

Theory : 3 Hrs./Week

1. Biopharmaceutics

1. Introduction to Biopharmaceutics
 a. Absorption of drugs from gastrointestinal tract.
 b. Drug Distribution.
 c. Drug Elimination.

2. Pharmacokinetics

2. Introduction to Pharmacokinetics.
 a. Mathematical model
 b. Drug levels in blood.
 c. Pharmacokinetic model
 d. Compartment models
 e. Pharmacokinetic study.

3. One compartment open model.
 a. Intravenous Injection (Bolus)
 b. Intravenous infusion.

4. Multicompartment models.
 a. Two compartment open model.
b. IV bolus, IV infusion and oral administration

5. **Multiple – Dosage Regimens.**
 a. Repetitive Intravenous injections – One Compartment Open Model
 b. Repetitive Extravascular dosing – One Compartment Open model
 c. Multiple Dose Regimen – Two Compartment Open Model

6. **Nonlinear Pharmacokinetics.**
 a. Introduction
 b. Factors causing Non-linearity.

7. **Noncompartmental Pharmacokinetics.**
 a. Statistical Moment Theory.
 b. MRT for various compartment models.
 c. Physiological Pharmacokinetic model.

8. **Bioavailability and Bioequivalence.**
 a. Introduction.
 b. Bioavailability study protocol.
 c. Methods of Assessment of Bioavailability

BIOPHARMACEUTICS AND PHARMACOKINETICS (PRACTICAL)

Practical : 3 Hrs./Week

1. Improvement of dissolution characteristics of slightly soluble drugs by some methods.
2. Comparison of dissolution studies of two different marketed products of same drug.
3. Influence of polymorphism on solubility and dissolution.
4. Protein binding studies of a highly protein bound drug and poorly protein bound drug.
5. Extent of plasma-protein binding studies on the same drug (i.e. highly and poorly protein bound drug) at different concentrations in respect of constant time.
6. Bioavailability studies of some commonly used drugs on animal/human model.
7. Calculation of Ka, Ke, t1/2, Cmax, AUC, AUMC, MRT etc. from blood profile data.
8. Calculation of bioavailability from urinary excretion data for two drugs.
9. Calculation of AUC and bioequivalence from the given data for two drugs.
10. In vitro absorption studies.
11. Bioequivalency studies on the different drugs marketed. (eg) Tetracycline, Sulphamethoxzole, Trimethoprim, Aspirin etc., on animals and human volunteers.

12. Absorption studies in animal inverted intestine using various drugs.

13. Effect on contact time on the plasma protein binding of drugs.

14. Studying metabolic pathways for different drugs based on elimination kinetics data.

15. Calculation of elimination half-life for different drugs by using urinary elimination data and blood level data.

References:

a. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi

c. Pharmacokinetics: By Milo Gilbaldi Donald, R. Mercey Dekker Inc.

d. Handbook of Clinical Pharmacokinetics, By Milo Gibaldi and Laurie Prescott by ADIS Health Science Press.

e. Biopharmaceutics and Pharmacokinetics; By Robert F Notari

f. Biopharmaceutics; By Swarbrick

g. Biopharmaceutics and Pharmacokinetics: A Treatise, By D.M. Brahman Karand Sunil B. Jaiswal, Vallabh Prakashan Pitampura, Delhi

CLINICAL TOXICOLOGY (THEORY)

Theory: 2 Hrs./Week

1. General principles involved in the management of poisoning

2. Antidotes and the clinical applications.

3. Supportive care in clinical Toxicology.

5. EliminationEnhancement.
6. Toxicokinetics.
7. Clinical symptoms and management of acute poisoning with the following agents—
 a) Pesticidepoisoning: organophosphorouscompounds, carbamates, organochlorines, pyrethroids.
 b) Opiatesoverdose.
 c) Antidepressants
 d) Barbiturates andbenzodiazepines.
 e) Alcohol: ethanol, methanol.
 f) Paracetamol andsalicylates.
 g) Non-steroidal anti-inflammatorydrugs.
 h) Hydrocarbons: Petroleum products andPEG.
 i) Caustics: inorganic acids andalkali.
 j) Radiationpoisoning
8. Clinical symptoms and management of chronic poisoning with the following agents—
 Heavy metals: Arsenic, lead, mercury, iron, copper
11. Foodpoisonings
12. Envenomations – Arthropod bites andstings.

Substance abuse:

Signs and symptoms of substance abuse and treatment of dependence
 a) CNS stimulants: amphetamine
 b) Opioids
 c) CNSdepressants
 d) Hallucinogens: LSD
 e) Cannabissubstance
 f) Tobacco

References:

1. Drug development process:

 Introduction
 Various Approaches to drug discovery
 1. Pharmacological
 2. Toxicological
 3. IND Application
 4. Drug characterization
 5. Dosage form

2. Clinical development of drug:

 1. Introduction to Clinical trials
 2. Various phases of clinical trial.
 3. Methods of post marketingsurveillance
 5. Good Clinical Practice – ICH, GCP, Central drug standard control organisation (CDSCO) guidelines
 6. Challenges in the implementation of guidelines
 7. Ethical guidelines in Clinical Research
 8. Composition, responsibilities, procedures of IRB / IEC
 9. Overview of regulatory environment in USA, Europe and India.
 10. Role and responsibilities of clinical trial personnel as per ICH GCP
 a. Sponsor
 b. Investigators
 c. Clinical research associate
 d. Auditors
 e. Contract research coordinators
 f. Regulatory authority
 11. Designing of clinical study documents (protocol, CRF, ICF, PIC with assignment)
 12. Informed consent Process
 13. Data management and its components
References:

PHARMACOEPIEDEMOLOGY AND PHARMACOECONOMICS (THEORY)

Theory: 3 Hrs./Week

1. Pharmacoepidemiology:

Definition and scope:
Origin and evaluation of pharmacoepidemiology need for pharmacoepidemiology, aims and applications.

Measurement of outcomes in pharmacoepidemiology
Outcome measure and drug use measures
Prevalence, incidence and incidence rate. Monetary units, number of prescriptions, units of drugs dispensed, defined daily doses and prescribed daily doses, medication adherence measurement

Concept of risk in pharmacoepidemiology
Measurement of risk, attributable risk and relative risk, time-risk relationship and odds ratio

Pharmacoepidemiological methods
Includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods

Drug utilization review, case reports, case series, surveys of drug use, cross – sectional studies, cohort studies, case control studies, case – cohort studies, meta – analysis studies, spontaneous reporting, prescription event monitoring and record linkage system.

Sources of data for pharmacoepidemiological studies
Ad Hoc data sources and automated data systems.
Selected special applications of pharmacoepidemiology

Studies of vaccine safety, hospital pharmacoepidemiology, pharmacoepidemiology and risk management, drug induced birth defects.

2. Pharmacoconomics:

Definition, history, needs of pharmacoeconomic evaluations

Role in formulary management decisions

Pharmacoeconomic evaluation

Outcome assessment and types of evaluation

Includes theoretical aspects of various methods and practical study of various methods with the help of case studies for individual methods:

Cost – minimization, cost- benefit, cost – effectiveness, cost utility

3. Applications of Pharmacoeconomics

Software and case studies

CLINICAL PHARMACOKINETICS AND PHARMACOTHERAPEUTIC

DRUG MONITORING (THEORY)

Theory : 2 Hrs./Week

1. Introduction to Clinical pharmacokinetics.

2. Design of dosageregimens:

Nomograms and Tabulations in designing dosage regimen, Conversion from intravenous to oral dosing, Determination of dose and dosing intervals, Drug dosing in the elderly and pediatrics and obese patients.

3. Pharmacokinetics of Drug Interaction:
 a. Pharmacokinetic drug interactions
 b. Inhibition and Induction of Drug metabolism
 c. Inhibition of Biliary Excretion.

4. Therapeutic Drug monitoring:
 a. Introduction
 b. Individualization of drug dosing regimen (Variability–Genetic, Age and Weight, disease, Interacting drugs).
 c. Indications for TDM. Protocol for TDM.
 d. Pharmacokinetic/Pharmacodynamic Correlation in drug therapy.
 e. TDM of drugs used in the following disease conditions: cardiovascular disease, Seizure disorders, Psychiatric conditions, and Organ transplantsations.
5. **Dosage adjustment in Renal and hepatic Disease.**
 a. Renal impairment
 b. Pharmacokinetic considerations
 c. General approach for dosage adjustment in Renal disease.
 d. Measurement of Glomerular Filtration rate and creatinine clearance.
 e. Dosage adjustment for uremic patients.
 f. Extracorporeal removal of drugs.
 g. Effect of Hepatic disease on pharmacokinetics.

6. **Population Pharmacokinetics.**
 a. Introduction to Bayesian Theory.
 b. Adaptive method or Dosing with feedback.
 c. Analysis of Population pharmacokinetic Data.

7. **Pharmacogenetics**
 b. Genetic Polymorphism in Drug Transport and Drug Targets.
 c. Pharmacogenetics and Pharmacokinetics/Pharmacodynamic considerations
1) SPECIFIC OBJECTIVES:

i) to provide patient care in cooperation with patients, prescribers, and other members of an interprofessional health care team based upon sound therapeutic principles and evidence-based data, taking into account relevant legal, ethical, social, cultural, economic, and professional issues, emerging technologies, and evolving biomedical, pharmaceutical, social or behavioral or administrative, and clinical sciences that may impact therapeutic outcomes.

ii) to manage and use resources of the healthcare system, in cooperation with patients, prescribers, other healthcare providers, and administrative and supportive personnel, to promote health; to provide, assess, and coordinate safe, accurate, and time-sensitive medication distribution; and to improve therapeutic outcomes of medication use.

iii) to promote health improvement, wellness, and disease prevention in cooperation with patients, communities, at-risk population, and other members of an interprofessional team of healthcare providers.

iv) to demonstrate skills in monitoring of the National Health Programmes and schemes, oriented to provide preventive and promotive health care services to the community.

v) to develop leadership qualities to function effectively as a member of the health care team organised to deliver the health and family welfare services in existing socio-economic, political and cultural environment.

vi) to communicate effectively with patients and the community.

2) OTHER DETAILS:

i) All parts of the internship shall be done, as far as possible, in institutions in India. In case of any difficulties, the matter may be referred to the Pharmacy Council of India to be considered on merits.

ii) Where an intern is posted to district hospital for training, there shall be a committee consisting of representatives of the college or university, and the district hospital administration, who shall regulate the training of such trainees. For such trainees, a certificate of satisfactory completion of training shall be obtained from the relevant administrative authorities which shall be countersigned by the principal or Dean of College.

iii) Every candidate shall be required, after passing the final Pharm.D. or Pharm.D. (Post Baccalaureate) examination as the case may be, to undergo a period of twelve months so as to be eligible for the award of the degree of Pharm.D. or Pharm.D. (Post Baccalaureate) as the case may be.

3. ASSESSMENT OF INTERNSHIP:

i) The intern shall maintain a record of work which is to be verified and certified by the preceptor (teacher-practitioner) under whom he works. Apart from scrutiny of the record of work, assessment and evaluation of trainings shall be undertaken by an objective approach using situation tests of knowledge, skills and attitudes during and at the end of the training. Based on the record of work and date of evaluation, the Dean or Principal shall issue certificate of satisfactory completion of training, following which the university shall award the degree or declare him eligible for it.

ii) Satisfactory completion of internship shall be determined on the basis of the following:
(1) Proficiency of knowledge required for each casemanagement

(2) The competency in skills expected for providing Clinical Pharmacy Services

(3) Responsibility, punctuality, workup of case, involvement in patient care

(4) Ability to work in a team (Behavior with other healthcare professionals including medical doctors, nursing staff and colleagues).

(5) Initiative, participation in discussions, research aptitude.

<table>
<thead>
<tr>
<th>Poor</th>
<th>Fair</th>
<th>Below Average</th>
<th>Average</th>
<th>Above Average</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

A Score of less than 3 in any of above items will represent unsatisfactory completion of internship.

Note: APPENDIX-B (Conditions to be fulfilled by the Academic training institution) & APPENDIX-B (Conditions to be fulfilled by the Examining authority) are not included in this syllabus book.
ADDITIONAL GUIDELINES FOR PHARM D

The Pharm D programme of Amrita Vishwa Vidyapeetham follows the syllabus and regulations framed under section 10 of Pharmacy Act 1948, as approved by Govt. of India and notified by Pharmacy Council of India (PCI) as PharmD regulations 2008. The following shall serve as additional guidelines for PharmD of Amrita Vishwa Vidyapeetham.

1. Remedial Course

All the students shall take one remedial coursework; Remedial Maths/Biology. Those who have not studied biology in plus two shall study Remedial biology and those who have not studied Maths in plus two shall study Remedial Maths and those who have studied both Maths and Biology in plus two can opt either of the remedial courses. The remedial courses shall be evaluated by school levelexam.

2. Maximum allowable carryover

As per PCI regulations the eligibility for promotion to next year is “All students who have appeared for all the subjects and passed the first year annual examination are eligible for promotion to the second year and, soon. However, failure in more than two subjects shall debar him or her from promotion to the next year classes”.

Anyway the maximum allowable carryover at any time during 1st - 5th year shall be two subjects from any previous year and a student shall pass all the subjects of 1st year in order to be promoted to 4th year and shall pass all the subjects of 1st & 2nd year for promotion to 5th year. However, a student shall become eligible for internship only if he/she passes all the subjects of 1st - 5th year of Pharm D.

3. Hospital/Community pharmacy training

Pharm D students shall undergo training in a hospital or community pharmacy for not less than 150 hrs spread over 4 weeks during the vacation of either 2nd or 3rd year (can be done in one stretch or partly during the two vacations) and shall submit the report and certificate. Students shall successfully complete the evaluation of the same in order to be eligible for promotion to 4th year Pharm D and the evaluation can be done by the faculty of the Dept. of Pharmacy Practice.

4. Internship

The student shall pass all subjects of 1st - 5th yr for starting the internship. They shall follow the guidelines and policies of the institution for internship and shall submit an undertaking towards this. The internship shall be evaluated based on the written feedback collected from the clinical preceptor, as well as the faculty preceptor, and by the presentation by the student after each posting. The scorecard of internship based on these evaluations shall be issued after the completion of internship. The students are encouraged to do internship in AMRITA only. Only in special cases, and with prior permission, students can apply to other hospitals/industry for internship preferably during the last posting.

5. Question paper pattern for sessional & University exam.

The pattern for question paper is as follows. There shall be no choice of questions in the university as well as sessional exam.

University exam: There are two sections.

Section A

Essay questions (3 questions) = 3 x 10 = 30 marks
Section B

Short answer questions (4 questions) = 4 x 5 marks = 20 marks

Very short answer questions (10 questions) = 10 x 2 = 20 marks

Sessional exam:

Essay question (1 question) = 1 x 10 = 10 marks

Short answer questions (2 questions) = 2 x 5 = 10 marks

Very short answer questions (5 questions) = 5 x 2 = 10 marks

Total = 30 marks

6. Eligibility of examiners & Question Paper setters (Q. P.Setter)

i) Internal Examiners:

Teachers of Amrita School of Pharmacy who are handling the respective courses and are having minimum 3 years of teaching experience are eligible to be appointed as internal examiners for theory & practical exams for Pharm D 1st to 3rd year and teachers with not less than 5 years of teaching experience are eligible to be appointed as internal examiners for theory & practical exams of Pharm D 4th & 5th year.

ii) External Examiners:

Teachers having a minimum of 5 years relevant teaching experience in PCI/AICTE approved Pharmacy institutions are eligible to be appointed as external examiners for 1st to 3rd year theory and practical examinations. Teachers having not less than 10 years of relevant experience in concerned courses in PCI/AICTE approved Pharmacy institutions are eligible to be appointed as external examiners for 4th and 5th year of Pharm D.

iii) Q.P.Setter

Faculty who are eligible to be internal & external examiners as per the above criteria are eligible to be Q.P setters too.

7. Project

As per PCI regulations, there shall be a group project in the 5th year of Pharm D in order to develop data collection & reporting skills in the area of community, hospital & clinical pharmacy, under the supervision of a faculty and the topic must be approved by HOD or Head of the Institution. Project involving patient data collection, patient interaction or intervention must get approval from Institutional Ethics Committee (IEC). Each group shall do a project protocol presentation before the research committee of the school. The presentation shall cover the aim & objectives of the study, research question & hypothesis, relevance of the study, etc. The research committee shall forward the project protocol along with its recommendations to IEC. The students will have to present before the IEC for approval. The project report in the form of thesis shall be submitted along with guidelines and the final evaluation of the project shall be done by a committee including internal & external examiner, HOD & Principal. The evaluation shall be done as per the criteria mentioned in the regulations of PCI.

8. Improvement of Internal marks

A student who fails in university exam in the 1st attempt can apply for improvement sessional exam by submitting the duly filled application form when notified by the Principal.
9. Condonation under exceptional cases:

In case the attendance of student falls short of 80% in any course due to continuous absence caused by unforeseen circumstances, such case may be considered by the Principal for condonation of absence based on the request of the student supported by recommendation of the respective class coordinator. However in such cases, the student must have duly applied for leave in time. The overall attendance of a student in such cases shall not fall below 70%. Condonation will be considered only in the case of those students who have proved themselves to be otherwise regular, by attending at least 80% of the classes during the semester, excluding the period of long leave. At least 70% physical presence is mandatory in every course even in such exceptional cases and this provision can be exercised by a student, only once in the programme. However, the student may apply for a second condonation in the 5th year provided he or she does not have any arrears.

Condonation cannot be claimed as a matter of right. It shall be granted at the discretion of the authorities, based on the genuineness and validity of the reasons cited for the absence. A student is not eligible for condonation, if he had any unauthorized absence during the year.

10. Revaluation

A failed student shall have the right to apply for revaluation of the theory paper by filling the application form along with the required fees within the stipulated time after the publication of the result.

11. Additional courses for Pharm D Post Baccalaureate

Therapeutics I and Therapeutics II courses taught in 2nd and 3rd year respectively of Pharm. D regular programme are included in the 1st year of Pharm. D (PB) which is considered as equivalent to 4th year Pharm. D regular, by PCI as these subjects are not taught at the B. Pharm level (as per the revised B. Pharm semester syllabus of PCI). Except for these two subjects all other classes will be handled together for Pharm D regular 4th year and Pharm D PB 1st year.

12. Publication of paper

The requirement of one publication in a Scopus indexed journal for eligibility for award of degree as mandated by Amrita Vishwa Vidyapeetham, shall be applicable to Pharm D considering the fact that it is an approved PG programme.