Annexure III

Syllabus

Agronomy

Fundamentals of Agronomy 4(3+1)

Theory

Agronomy and its scope, seeds and sowing, tillage and tilth, crop density and geometry, crop nutrition, manures and fertilizers, nutrient use efficiency, water resources, soil-plant-water relationship, crop water requirement, water use efficiency, irrigation- scheduling criteria and methods, quality of irrigation water and water logging.

Practical

Identification of crops, seeds, fertilizers, pesticides and tillage implements, study of agroclimatic zones of India, identification of weeds in crops, methods of herbicide and fertilizer application, study of yield contributing characters and yield estimation, seed germination and viability test, numerical exercises on fertilizer requirement, plant population, herbicides and water requirement, use of tillage implements-reversible plough, one way plough, harrow, leveler, seed drill, study of soil moisture measuring devices, measurement of field capacity, bulk density, infiltration rate and measurement of irrigation water.

Crop Production Technology-I (Kharif Crops) 2(1+1)

Theory

Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of Kharif crops. Cereals – rice, maize, sorghum, pearl millet, finger millet, pulses-pigeonpea, mungbean and urdbean, oilseeds- groundnut, soybean,fibre crops- cotton & jute; forage crops-sorghum, cowpea, cluster bean and napier.
Practical

Rice nursery preparation, transplanting of rice, sowing of soybean, pigeonpea and mungbean, maize, groundnut and cotton, effect of seed size on germination and seedling vigour of kharif season crops, effect of sowing depth on germination of kharif crops, identification of weeds in kharif season crops, top dressing and foliar feeding of nutrients, study of yield contributing characters and yield calculation of kharif season crops, study of crop varieties and important agronomic experiments at experimental farm. Study of forage experiments, morphological description of kharif season crops and visit to research centers of related crops.

Crop Production Technology-II (Rabi crops) 2(1+1)

Theory

Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and yield of Rabi crops; cereals –wheat and barley, pulses-chickpea, lentil, peas, oilseeds-rape, mustard and sunflower; sugar crops-sugarcane; medicinal and aromatic crops-mentha, lemon grass and citronella. Forage crops-berseem, lucerne and oat.

Practical

Sowing methods of wheat and sugarcane, identification of weeds in rabiseason crops, study of morphological characteristics of rabicrops, study of yield contributing characters of rabiseason crops, yield and juice quality analysis of sugarcane and study of important agronomic experiments of rabicrops at experimental farms. Study of rabiforage experiments, oil extraction of medicinal crops and visit to research stations of related crops.

Farming System and Sustainable Agriculture 1(1+0)

Theory

Farming System-scope, importance, and concept. Types and systems of farming system and factors affecting types of farming. Farming system components and their maintenance, cropping system and pattern, multiple cropping system, efficient cropping system and their evaluation, allied enterprises and their importance, tools for determining production and efficiencies in cropping and farming system, sustainable agriculture-problems and its impact on agriculture, indicators of sustainability, adaptation and mitigation, conservation agriculture strategies in agriculture, HEIA, LEIA and LEISA and its techniques for sustainability, integrated farming system-historical background, objectives and characteristics, components of IFS and its
advantages, site specific development of IFS model for different agro-climatic zones, resource use efficiency and optimization techniques, resource cycling and flow of energy in different farming system, farming system and environment, visit of IFS model in different agro-climatic zones of nearby states, University/ institutes and farmers field.

Introductory Agrometeorology & Climate Change 2(1+1)

Theory

Meaning and scope of agricultural meteorology; earth atmosphere- its composition, extent and structure. Atmospheric weather variables; atmospheric pressure, its variation with height, wind, types of wind, daily and seasonal variation of wind speed, cyclone, anticyclone, land breeze and sea breeze. Nature and properties of solar radiation, solar constant, depletion of solar radiation, short wave, longwave and thermal radiation, net radiation and albedo. Atmospheric temperature, temperature inversion, lapse rate, daily and seasonal variations of temperature and vertical profile of temperature. Energy balance of earth, atmospheric humidity, concept of saturation, vapor pressure, process of condensation, formation of dew, fog, mist, frost and cloud. Precipitation, process of precipitation, types of precipitation such as rain, snow, sleet and hail, cloud formation and classification. Artificial rainmaking. Monsoon- mechanism and importance in Indian agriculture, weather hazards - drought, floods, frost, tropical cyclones and extreme weather conditions such as heat-wave and cold-wave. Agriculture and weather relations; modifications of crop microclimate, climatic normals for crop and livestock production. Weather forecasting, types of weather forecast and their uses. Climate change, climatic variability, global warming, causes of climate change and its impact on regional and national Agriculture.

Practical

Practical Crop Production-I (Kharif Crops) 2(0+2)

Practical

Crop planning, raising field crops in multiple cropping systems. Field preparation, seed, treatment, nursery raising, sowing, nutrient, water and weed management and management of insect-pests diseases of crops, harvesting, threshing, drying, winnowing, storage and marketing of produce. The emphasis will be given to seed production, mechanization, resource conservation and integrated nutrient, insect-pest and disease management technologies. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team of 8-10 students.

Geoinformatics, Nano-technology and Precision Farming 2(1+1)

Theory

Precision agriculture: Concepts and techniques, their issues and concerns for Indian agriculture, Geo-informatics- definition, concepts, tool and techniques; their use in Precision Agriculture. Crop discrimination and yield monitoring, soil mapping; fertilizer recommendation using geospatial technologies. Spatial data and their management in GIS. Remote sensing concepts and application in agriculture. Image processing and interpretation. Global positioning system (GPS), components and its functions. Introduction to crop Simulation Models and their uses for optimization of Agricultural Inputs, STCR approach for precision agriculture. Nanotechnology, definition, concepts and techniques, brief introduction about nanoscale effects, nano-particles, nano-pesticides, nano-fertilizers, nano-sensors, use of nanotechnology in seed, water, fertilizer and plant protection for scaling-up farm productivity.

Practical

Practical Crop Production-II (Rabi Crops) 2(0+2)

Practical

Crop planning, raising field crops in multiple cropping systems: Field preparation, seed, treatment, nursery raising, sowing, nutrient, water and weed management and management of insect-pests diseases of crops, harvesting, threshing, drying, winnowing, storage and marketing of produce. The emphasis will be given to seed production, mechanization, resource conservation and integrated nutrient, insect-pest and disease management technologies. Preparation of balance sheet including cost of cultivation, net returns per student as well as per team of 8-10 students.

Rainfed Agriculture and Watershed Management 2(1+1)

Theory

Rainfed agriculture: Introduction, types, History of rainfed agriculture and watershed in India. Problems and prospects of rainfed agriculture in India. Soil and climatic conditions prevalent in rainfed areas, soil and water conservation techniques. Drought: types, effect of water deficit on physio-morphological characteristics of the plants, crop adaptation and mitigation to drought. Water harvesting: importance, its techniques, efficient utilization of water through soil and crop management practices, management of crops in rainfed areas, contingent crop planning for aberrant weather conditions, concept, objective, principles and components of watershed management and factors affecting watershed management.

Practical

Studies on climate classification, studies on rainfall pattern in rainfed areas of the country and pattern of onset and withdrawal of monsoons. Studies on cropping pattern of different rainfed areas in the country and demarcation of rainfed area on map of India. Interpretation of meteorological data and scheduling of supplemental irrigation on the basis of evapotranspiration demand of crops. Critical analysis of rainfall and possible drought period in the country, effective rainfall and its calculation. Studies on cultural practices for mitigating moisture stress.
Characterization and delineation of model watershed. Field demonstration on soil & moisture conservation measures. Field demonstration on construction of water harvesting structures and visit to rainfed research station/watershed.

Principles of Organic Farming 2(1+1)

Theory

Practical

Visit of organic farms to study the various components and their utilization; preparation of enrich compost, vermicompost, bio-fertilizers/bio-inoculants and their quality analysis. Indigenous technology knowledge (ITK) for nutrient, insect, pest, disease and weed management. Cost of organic production system, post-harvest management, quality aspect, grading, packaging and handling.

Weed Management 3(2+1)

Theory

Practical

System Simulation and Agro Advisory 3(2+1)

Theory

System Approach for representing soil-plant-atmospheric continuum, system boundaries, Crop models, concepts & techniques, types of crop models, data requirements, relational diagrams. Evaluation of crop responses to weather elements; Elementary crop growth models; calibration, validation, verification and sensitivity analysis. Potential and achievable crop production- concept and modelling techniques for their estimation. Crop production in moisture and nutrients limited conditions; components of soil water and nutrients balance. Weather forecasting, types, methods, tools & techniques, forecast verification; value added weather forecast, ITK for weather forecast and its validity; Crop-Weather Calendars; Preparation of agro-advisory bulletin based on weather forecast. Use of crop simulation model for preparation of Agro-advisory and its effective dissemination.

Practical

Genetics & Plant Breeding

Fundamentals of Genetics 3(2+1)

Theory

Multiple alleles, pleiotropism and pseudoalleles, sex determination and sex linkage, sex limited and sex influenced traits, blood group genetics, linkage and its estimation, crossing over mechanisms and chromosome mapping. Structural and numerical variations in chromosome and their implications, use of haploids, dihaploids and doubled haploids in Genetics. Mutation, classification, methods of inducing mutations & CIB technique, mutagenic agents and induction of mutation. Qualitative & Quantitative traits, polygenes and continuous variations, multiple factor hypothesis, cytoplasmic inheritance. Genetic disorders, nature, structure & replication of genetic material. Protein synthesis, Transcription and translational mechanism of genetic material, gene concept: gene structure, function and regulation, Lac and Trp operons.

Practical

Study of microscope and study of cell structure. Mitosis and Meiosis cell division. Experiments on monohybrid, dihybrid, trihybrid, test cross and back cross. Experiments on epistatic interactions including test cross and back cross. Practice on mitotic and meiotic cell division, experiments on probability and Chi-square test. Determination of linkage and crossover analysis (through two-point test cross and three-point test cross data). Study on sex linked inheritance in Drosophila. Study of models on DNA and RNA structures.

Fundamentals of Plant Breeding 3(2+1)

Theory

Historical development, concept, nature and role of plant breeding, major achievements and future prospects; genetics in relation to plant breeding, modes of reproduction and apomixes, self-incompatibility and male sterility- genetic consequences, cultivar options. Domestication, acclimatization and introduction. Centres of origin/ diversity and components of genetic

Practical

Principles of Seed Technology 3(1+2)

Theory

Seed and seed technology: introduction, definition and importance. Deterioration causes of crop varieties and their control. Maintenance of genetic purity during seed production and seed quality. Definition, characters of good quality seed and different classes of seed. Foundation and certified seed production of important cereals, pulses, oilseeds, fodder and vegetables. Seed certification, phases of certification, procedure for seed certification and field inspection. Seed Act and Seed Act enforcement. Duty and powers of seed inspector, offences and penalties. Seeds Control Order 1983, varietal identification through grow out test and electrophoresis, molecular

Seed drying, processing and their steps, seed testing for quality assessment, seed treatment, its importance, method of application and seed packing. Seed storage; general principles, stages and factors affecting seed longevity during storage. Measures for pest and disease control during storage. Seed marketing: structure and organization, sales generation activities, promotional media. Factors affecting seed marketing. Role of WTO and OECD in seed marketing. Private and public sectors and their production and marketing strategies.

Practical

Crop Improvement – I (Kharif) 2(1+1)

Theory

Centers of origin, distribution of species, wild relatives in different cereals; pulses; oilseeds; fibres; fodders and cash crops; vegetable and horticultural crops. Plant genetic resources, its utilization and conservation, study of genetics of qualitative and quantitative characters. Important concepts of breeding self-pollinated, cross-pollinated and vegetatively propagated crops. Major breeding objectives and procedures including conventional and modern innovative approaches for development of hybrids and varieties for yield, adaptability, stability, abiotic and biotic stress tolerance and quality (physical, chemical, nutritional). Hybrid seed production technology in Maize, Rice, Sorghum, Pearl millet and Pigeonpea. Ideotype concept and climate resilient crop varieties for future.

Practical

Floral biology, emasculation and hybridization techniques in different crop species; viz., rice, jute, maize, sorghum, pearl millet, ragi, pigeonpea, urdbean, mung bean, soybean,
groundnut, sesame, caster, cotton, cowpea, tobacco, brinjal, okra and cucurbitaceous crops. Maintenance breeding of different kharif crops. Handling of germplasm and segregating populations by different methods like pedigree, bulk and single seed decent methods. Study of field techniques for seed production and hybrid seeds production in Kharif crops. Estimation of heterosis, inbreeding depression and heritability. Layout of field experiments, study of quality characters, donor parents for different characters; visit to seed production plots; visit to AICRP plots of different field crops.

Crop Improvement – II (Rabi) 2(1+1)

Theory

Centers of origin, distribution of species, wild relatives in different cereals; pulses; oilseeds; fodder crops and cash crops; vegetable and horticultural crops; plant genetic resources, its utilization and conservation; study of genetics of qualitative and quantitative characters; major breeding objectives and procedures including conventional and modern innovative approaches for development of hybrids and varieties for yield, adaptability, stability, abiotic and biotic stress tolerance and quality (physical, chemical, nutritional); hybrid seed production technology of rabi crops. Ideotype concept and climate resilient crop varieties for future.

Practical

Floral biology, emasculation and hybridization techniques in different crop species namely wheat, oat, barley, chickpea, lentil, field pea, rajma, horse gram, rapeseed mustard, sunflower, safflower, potato, berseem. sugarcane, tomato, chilli, onion; handling of germplasm and segregating populations by different methods like pedigree, bulk and single seed decent methods; study of field techniques for seed production and hybrid seeds production in Rabi crops; estimation of heterosis, inbreeding depression and heritability; layout of field experiments; study of quality characters, study of donor parents for different characters; visit to seed production plots; visit to AICRP plots of different field crops.

Commercial Plant Breeding 3(1+2)

Theory

Types of crops and modes of plant reproduction. Line development and maintenance breeding in self and cross pollinated crops (A/B/R and two line system) for development of hybrids and seed production. Genetic purity test of commercial hybrids. Advances in hybrid seed
production of maize, rice, sorghum, pearl millet, castor, sunflower, cotton pigeon pea, *Brassica* etc. Quality seed production of vegetable crops under open and protected environment. Alternative strategies for the development of the line and cultivars: Haploid inducer, tissue culture techniques and biotechnological tools. IPR issues in commercial plant breeding: DUS testing and registration of varieties under PPV & FR Act. Variety testing, release and notification systems in India. Principles and techniques of seed production, types of seeds, quality testing in self- and cross-pollinated crops.

Practical

Floral biology in self- and cross-pollinated species, selfing and crossing techniques. Techniques of seed production in self- and cross-pollinated crops using A/B/R and two line system. Learning techniques in hybrid seed production using male-sterility in field crops. Understanding the difficulties in hybrid seed production, Tools and techniques for optimizing hybrid seed production. Concept of rouging in seed production plot. Concept of line its multiplication and purification in hybrid seed production. Role of pollinators in hybrid seed production. Hybrid seed production techniques in sorghum, pearl millet, maize, rice, rapeseed-mustard, sunflower, castor, pigeon pea, cotton and vegetable crops. Sampling and analytical procedures for purity testing and detection of spurious seed. Seed drying and storage structure in quality seed management. Screening techniques during seed processing viz., grading and packaging. Visit to public, private seed production and processing plants.

Micropropagation Technologies 3(1+2)

Theory

Introduction, history, advantages and limitations; types of cultures (seed, embryo, organ, callus, cell), stages of micropropagation, axillary bud proliferation (shoot tip and meristem culture, bud culture), organogenesis (callus and direct organ formation), somatic embryogenesis, cell suspension cultures, production of secondary metabolites, somaclonal variation and cryopreservation

Practical
Identification and use of equipment in tissue culture laboratory, nutrition media composition, sterilization techniques for media, containers and small instruments, sterilization techniques for explants, preparation of stocks and working solution, preparation of working medium, culturing of explants: seeds, shoot tip and single node, callus induction, induction of somatic embryos regeneration of whole plants from different explants and hardening procedures.
Soil Science & Agricultural Chemistry

Fundamentals of Soil Science 3(2+1)

Theory

Soil as a natural body, pedological and edaphological concepts of soil; soil genesis: soil forming rocks and minerals; weathering, processes and factors of soil formation; soil profile, components of soil; soil physical properties: soil-texture, structure, density and porosity, soil colour, consistence and plasticity; elementary knowledge of soil taxonomy classification and soils of India; soil water retention, movement and availability; soil air, composition, gaseous exchange, problem and plant growth, soil temperature; source, amount and flow of heat in soil; effect on plant growth, soil reaction-pH, soil acidity and alkalinity, buffering, effect of pH on nutrient availability; soil colloids - inorganic and organic; silicate clays: constitution and properties; sources of charge; ion exchange, cation exchange capacity, base saturation; soil organic matter: composition, properties and its influence on soil properties; humic substances - nature and properties; soil organisms: macro and microorganisms, their beneficial and harmful effects; soil pollution - behavior of pesticides and inorganic contaminants, prevention and mitigation of soil pollution.

Practical

Problematic Soils and their Management 2(2+0)

Theory

Manures, Fertilizers and Soil Fertility Management 3(2+1)

Theory

Chemical fertilizers: classification, composition and properties of major nitrogenous, phosphatic, potassic fertilizers, secondary & micronutrient fertilizers, complex fertilizers, nano fertilizers, soil amendments, fertilizer storage and fertilizer control order.

History of soil fertility and plant nutrition. Criteria of essentiality, role, deficiency and toxicity symptoms of essential plant nutrients, mechanisms of nutrient transport to plants, factors affecting nutrient availability to plants. Chemistry of soil nitrogen, phosphorus, potassium, calcium, magnesium, sulphur and micronutrients. Soil fertility evaluation and soil testing. Critical levels of different nutrients in soil. Forms of nutrients in soil, plant analysis, rapid plant tissue tests and indicator plants. Methods of fertilizer recommendations to crops. Factor influencing nutrient use efficiency (NUE), methods of application under rainfed and irrigated conditions.

Practical

Agrochemicals 3 (2+1)

Theory

An introduction to agrochemicals, their type and role in agriculture, effect on environment, soil, human and animal health, merits and demerits of their uses in agriculture, management of agrochemicals for sustainable agriculture.

Herbicides-Major classes, properties and important herbicides and fate of herbicides.
Fungicides - classification – inorganic fungicides - characteristics, preparation and use of sulfur and copper, mode of action-Bordeaux mixture and copper oxychloride.

Organic fungicides- Mode of action- dithiocarbamates-characteristics, preparation and use of zineb and maneb.

Systemic fungicides- benomyl, carboxin, oxycarboxin, metalaxyl, carbendazim, characteristics and use. Introduction and classification of insecticides: inorganic and organic insecticides organochlorine, organophosphates, carbamates, synthetic pyrethroids neonicotinoids, biorationals, insecticide act and rules, insecticides banned, withdrawn and restricted use, fate of insecticides in soil & plant. IGRS biopesticides, reduced risk insecticides, botanicals, plant and animal systemic insecticides, their characteristics and uses.

Plant bio-pesticides for ecological agriculture, bio-insect repellent.

Practical

Agricultural Entomology

Fundamentals of Entomology 4(3+1)

Part I

Part II

Part III

Part IV

Systematics: Taxonomy –importance, history and development and binomial nomenclature. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta upto Orders, basic groups of present day insects with special emphasis to orders and families of Agricultural importance like Orthoptera: Acrididae, Tettigoniidae, Gryllidae, Gryllotalpidae; Dictyoptera: Mantidae, Blattidae; Odonata; Isoptera: Termitidae; Thysanoptera: Thripidae; Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; Neuroptera: Chrysopidae; Lepidoptera: Pieridae, Papiloinidae,
Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; Coleoptera: Coccinellidae, Chrysomelidae, Cerambycidae, Curculionidae, Bruchidae, Scarabaeidae; Hymenoptera: Tenthredinidae, Apidae. Trichogrammatidae, Ichneumonidae, Braconidae, Chalcididae; Diptera: Cecidomyiidae, Tachinidae, Agromyziidae, Culicidae, Muscidae, Tephritidae.

Practical

Methods of collection and preservation of insects including immature stages; external features of Grasshopper/Blister beetle; types of insect antennae, mouthparts and legs; wing venation, types of wings and wing coupling apparatus. Types of insect larvae and pupae; dissection of digestive system in insects (Grasshopper); dissection of male and female reproductive systems in insects (Grasshopper); study of characters of orders Orthoptera, Dictyoptera, Odonata, Isoptera, Thysanoptera, Hemiptera, Lepidoptera, Neuroptera, Coleoptera, Hymenoptera, Diptera and their families of agricultural importance. Insecticides and their formulations. Pesticide appliances and their maintenance. Sampling techniques for estimation of insect population and damage.

Pests of Crops and Stored Grains and their Management 3(2+1)

Theory

General account on nature and type of damage by different arthropods pests. Scientific name, order, family, host range, distribution, biology and bionomics, nature of damage, and management of major pests and scientific name, order, family, host range, distribution, nature of damage and control practice other important arthropod pests of various field crop, vegetable crop, fruit crop, plantation crops, ornamental crops, spices and condiments. Factors affecting losses of stored grain and role of physical, biological, mechanical and chemical factors in deterioration of grain. Insect pests, mites, rodents, birds and microorganisms associated with stored grain and their management. Storage structure and methods of grain storage and fundamental principles of grain store management.

Practical

Identification of different types of damage. Identification and study of life cycle and seasonal history of various insect pests attacking crops and their produce: (a) Field Crops; (b) Vegetable Crops; (c) Fruit Crops; (d) Plantation, gardens, Narcotics, spices & condiments. Identification of insect pests and Mites associated with stored grain. Determination of insect

Management of Beneficial Insects 2(1+1)

Theory

Importance of beneficial Insects, Beekeeping and pollinators, bee biology, commercial methods of rearing, equipment used, seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Insect pests and diseases of honey bee. Role of pollinators in cross pollinated plants.

Species of lac insect, morphology, biology, host plant, lac production – seed lac, button lac, shellac, lac- products. Identification of major parasitoids and predators commonly being used in biological control.

Insect orders bearing predators and parasitoids used in pest control and their mass multiplication techniques. Important species of pollinator, weed killers and scavengers with their importance.

Practical

Agricultural Economics

Fundamentals of Agricultural Economics 2(2+0)

Theory

functions, important features of capitalistic, socialistic and mixed economies, elements of economic planning.

Agricultural Finance and Co-Operation 3(2+1)

Theory

Agricultural Finance - meaning, scope and significance, credit needs and its role in Indian agriculture. Agricultural credit: meaning, definition, need, classification. Credit analysis: 4 R’s, and 3C’s of credits. Sources of agricultural finance: institutional and non-institutional sources, commercial banks, social control and nationalization of commercial banks, Micro financing including KCC. Lead bank scheme, RRBs, Scale of finance and unit cost. An introduction to higher financing institutions – RBI, NABARD, ADB, IMF, world bank, Insurance and Credit Guarantee Corporation of India. Cost of credit. Recent development in agricultural credit. Preparation and analysis of financial statements – Balance Sheet and Income Statement. Basic guidelines for preparation of project reports- Bank norms – SWOT analysis.

Agricultural Cooperation – Meaning, brief history of cooperative development in India, objectives, principles of cooperation, significance of cooperatives in Indian agriculture. Agricultural Cooperation in India- credit, marketing, consumer and multi-purpose cooperatives, farmers’ service cooperative societies, processing cooperatives, farming cooperatives, cooperative warehousing; role of ICA, NCUI, NCDC, NAFED.

Practical

Agricultural Marketing, Trade and Prices 3(2+1)

Theory

Agricultural Marketing: concepts and definitions of market, marketing, agricultural marketing, market structure, marketing mix and market segmentation, classification and characteristics of agricultural markets; demand, supply and producer’s surplus of agri-commodities: nature and determinants of demand and supply of farm products, producer’s surplus – meaning and its types, marketable and marketed surplus, factors affecting marketable surplus of agri-commodities; product life cycle (PLC) and competitive strategies: meaning and stages in PLC; characteristics of PLC; strategies in different stages of PLC; pricing and promotion strategies: pricing considerations and approaches – cost based and competition based pricing; market promotion – advertising, personal selling, sales promotion and publicity – their meaning and merits & demerits; marketing process and functions: marketing process-concentration, dispersion and equalization; exchange functions – buying and selling; physical functions – storage, transport and processing; facilitating functions – packaging, branding, grading, quality control and labeling (Agmark); market functionaries and marketing channels: types and importance of agencies involved in agricultural marketing; meaning and definition of marketing channel; number of channel levels; marketing channels for different farm products; integration, efficiency, costs and price spread: meaning, definition and types of market integration; marketing efficiency; marketing costs, margins and price spread; factors affecting cost of marketing; reasons for higher marketing costs of farm commodities; ways of reducing marketing costs; role of Govt. in agricultural marketing: Public sector institutions- CWC, SWC, FCI, CACP & DMI – their objectives and functions; cooperative marketing in India; risk in marketing: Types of risk in marketing; speculation & hedging; an overview of futures trading; agricultural prices and policy: meaning and functions of price; administered prices; need for agricultural price policy; trade: Concept of International Trade and its need, theories of absolute and comparative advantage. Present status and prospects of international trade in agri-commodities; GATT and WTO; Agreement on Agriculture (AoA) and its implications on Indian agriculture; IPR.

Practical

Plotting and study of demand and supply curves and calculation of elasticities; study of relationship between market arrivals and prices of some selected commodities; computation of
marketable and marketed surplus of important commodities; study of price behaviour over time for some selected commodities; construction of index numbers; visit to a local market to study various marketing functions performed by different agencies, identification of marketing channels for selected commodity, collection of data regarding marketing costs, margins and price spread and presentation of report in the class; visit to market institutions – NAFED, SWC, CWC, cooperative marketing society, etc. to study their organization and functioning; application of principles of comparative advantage of international trade.

Farm Management, Production and Resource Economics 2(1+1)

Theory

Meaning and concept of farm management, objectives and relationship with other sciences. Meaning and definition of farms, its types and characteristics, factor determining types and size of farms. Principles of farm management: concept of production function and its type, use of production function in decision-making on a farm, factor-product, factor-factor and product-product relationship, law of equi-marginal/or principles of opportunity cost and law of comparative advantage. Meaning and concept of cost, types of costs and their interrelationship, importance of cost in managing farm business and estimation of gross farm income, net farm income, family labour income and farm business income. Farm business analysis: meaning and concept of farm income and profitability, technical and economic efficiency measures in crop and livestock enterprises. Importance of farm records and accounts in managing a farm, various types of farm records needed to maintain on farm, farm inventory, balance sheet, profit and loss accounts. Meaning and importance of farm planning and budgeting, partial and complete budgeting, steps in farm planning and budgeting-linear programming, appraisal of farm resources, selection of crops and livestock’s enterprises. Concept of risk and uncertainty occurs in agriculture production, nature and sources of risks and its management strategies, Crop/livestock/machinery insurance– weather based crop insurance, features, determinants of compensation. Concepts of resource economics, differences between NRE and agricultural economics, unique properties of natural resources. Positive and negative externalities in agriculture, Inefficiency and welfare loss, solutions, Important issues in economics and management of common property resources of land, water, pasture and forest resources etc.
Practical

Agri-business Management 3 (2+1)

Theory

Practical

Agricultural Engineering

Soil and Water Conservation Engineering 2(1+1)

Theory

Practical

Farm Machinery and Power 2(1+1)

Theory

Status of Farm Power in India, Sources of Farm Power, I.C. engines, working principles of I.C. engines, comparison of two stroke and four stroke cycle engines, Study of different components of I.C. engine, I.C. engine terminology and solved problems, Familiarization with different systems of I.C. engines. Air cleaning, cooling, lubrication, fuel supply and hydraulic control system of a tractor, Familiarization with Power transmission system: clutch, gear box, differential and final drive of a tractor, Tractor types, Cost analysis of tractor power and attached implement, Familiarization with Primary and Secondary Tillage implement, Implement for hill agriculture, implement for intercultural operations, Familiarization with sowing and planting equipment, calibration of a seed drill and solved examples, Familiarization with Plant Protection equipment, Familiarization with harvesting and threshing equipment.

Practical

Study of different components of I.C. engines. To study air cleaning and cooling system of engine, Familiarization with clutch, transmission, differential and final drive of a tractor, Familiarization with lubrication and fuel supply system of engine, Familiarization with brake,
steering, hydraulic control system of engine, Learning of tractor driving, Familiarization with operation of power tiller, Implements for hill agriculture, Familiarization with different types of primary and secondary tillage implements: mould plough, disc plough and disc harrow. Familiarization with seedcum- fertilizer drills their seed metering mechanism and calibration, planters and transplanter Familiarization with different types of sprayers and dusters Familiarization with different intercultivation equipment, Familiarization with harvesting and threshing machinery.

Renewable Energy and Green Technology 2(1+1)

Theory

Classification of energy sources, contribution of these of sources in agricultural sector, Familiarization with biomass utilization for biofuel production and their application, Familiarization with types of biogas plants and gasifiers, biogas, bioalcohol, biodiesel and biooil production and their utilization as bioenergy resource, introduction of solar energy, collection and their application, Familiarization with solar energy gadgets: solar cooker, solar water heater, application of solar energy: solar drying, solar pond, solar distillation, solar photovoltaic system and their application, introduction of wind energy and their application.

Practical

Familiarization with renewable energy gadgets. To study biogas plants, To study gasifier, To study the production process of biodiesel, To study briquetting machine, To study the production process of bio-fuels. Familiarization with different solar energy gadgets. To study solar photovoltaic system: solar light, solar pumping, solar fencing. To study solar cooker, To study solar drying system. To study solar distillation and solar pond.

Protected Cultivation and Secondary Agriculture 2(1+1)

Theory

Green house technology: Introduction, Types of greenhouses; plant response to greenhouse environment, Planning and design of greenhouses, Design criteria of greenhouse for cooling and heating purposes. Greenhouses equipment, materials of construction for traditional and low cost greenhouses. Irrigation systems used in greenhouses, typical applications, passive solar green house, hot air green house heating systems, greenhouse drying. Cost estimation and economic analysis.
Important Engineering properties such as physical, thermal and aero & hydrodynamic properties of cereals, pulses and oilseed, their application in PHT equipment design and operation. Drying and dehydration; moisture measurement, EMC, drying theory, various drying method, commercial grain dryer (deep bed dryer, flat bed dryer, tray dryer, fluidized bed dryer, recirculatory dryer and solar dryer). Material handling equipment; conveyer and elevators, their principle, working and selection.

Practical

Study of different type of green houses based on shape. Determine the rate of air exchange in an active summer winter cooling system. Determination of drying rate of agricultural products inside green house. Study of green house equipment. Visit to various Post Harvest Laboratories. Determination of Moisture content of various grains by oven drying & infrared moisture methods. Determination of engineering properties (shape and size, bulk density and porosity of biomaterials). Determination of Moisture content of various grains by moisture meter. Field visit to seed processing plant.
Plant Pathology

Fundamentals of Plant Pathology 4(3+1)

Theory

Fungi: General characters, definition of fungus, somatic structures, types of fungal thalli, fungal tissues, modifications of thallus, reproduction (asexual and sexual). Nomenclature, Binominal system of nomenclature, rules of nomenclature, classification of fungi. Key to divisions, sub-divisions, orders and classes.

Bacteria and mollicutes: general morphological characters. Basic methods of classification and reproduction.

Nematodes: General morphology and reproduction, classification, symptoms and nature of damage caused by plant nematodes (Heterodera, Meloidogyne, Anguina, Radopholus etc.)

Practical

Acquaintance with various laboratory equipments and microscopy. Collection and preservation of disease specimen. Preparation of media, isolation and Koch’s postulates. General study of different structures of fungi. Study of symptoms of various plant diseases. Study of

Study of morphological features and identification of plant parasitic nematodes. Sampling and extraction of nematodes from soil and plant material, preparation of nematode mounting.

Diseases of Field & Horticultural Crops & their Management-I 3(2+1)

Theory

Symptoms, etiology, disease cycle and management of major diseases of following crops:

Field Crops: Rice: blast, brown spot, bacterial blight, sheath blight, false smut, khaira and tungro; Maize: stalk rots, downy mildew, leaf spots; Sorghum: smuts, grain mold and anthracnose, Bajra: downy mildew and ergot; Groundnut: early and late leaf spots, wilt

Soybean: Rhizoctonia blight, bacterial spot, seed and seedling rot and mosaic, Pigeonpea: Phytophthora blight, wilt and sterility mosaic; Finger millet: Blast and leaf spot; black & green gram: Cercospora leaf spot and anthracnose, web blight and yellow mosaic; Castor: Phytophthora blight; Tobacco: black shank, black root rot and mosaic. Horticultural Crops: Guava: wilt and anthracnose; Banana: Panama wilt, bacterial wilt, Sigatoka and bunchy top; Papaya: foot rot, leaf curl and mosaic, Pomegranate: bacterial blight; Cruciferous vegetables: Alternaria leaf spot and black rot; Brinjal: Phomopsis blight and fruit rot and Sclerotinia blight; Tomato: damping off, wilt, early and late blight, buck eye rot and leaf curl and mosaic; Okra: Yellow Vein Mosaic; Beans: anthracnose and bacterial blight; Ginger: soft rot; Colocasia: Phytophthora blight; Coconut: wilt and bud rot; Tea: blister blight; Coffee: rust

Practical

Identification and histopathological studies of selected diseases of field and horticultural crops covered in theory. Field visit for the diagnosis of field problems. Collection and preservation of plant diseased specimens for Herbarium; Note: Students should submit 50 pressed and well mounted specimens.
Principles of Integrated Pest and Disease Management 3(2+1)

Theory

Practical

Methods of diagnosis and detection of various insect pests, and plant diseases, Methods of insect pests and plant disease measurement, Assessment of crop yield losses, calculations based on economics of IPM, identification of biocontrol agents, different predators and natural enemies. Mass multiplication of Trichoderma, Pseudomonas, Trichogramma, NPV etc. Identification and nature of damage of important insect pests and diseases and their management. Crop (agroecosystem) dynamics of a selected insect pest and diseases. Plan & assess preventive strategies (IPM module) and decision making. Crop monitoring attacked by insect, pest and diseases. Awareness campaign at farmers fields.

Diseases of Field & Horticultural Crops & their Management-II 3(2+1)

Theory

Symptoms, etiology, disease cycle and management of following diseases:
Field Crops:

- Wheat: rusts, loose smut, karnal bunt, powdery mildew, alternaria blight, and ear cockle;
- Sugarcane: red rot, smut, wilt, grassy shoot, ratoon stunting and PokkahBoeng;
- Sunflower: Sclerotinia stem rot and Alternaria blight;
- Mustard: Alternaria blight, white rust, downy mildew and Sclerotinia stem rot;
- Gram: wilt, grey mould and Ascochyta blight;
Lentil: rust and wilt; Cotton: anthracnose, vascular wilt, and black arm; Pea: downy mildew, powdery mildew and rust.

Horticultural Crops:

Mango: anthracnose, malformation, bacterial blight and powdery mildew; Citrus: canker and gummosis; Grape vine: downy mildew, Powdery mildew and anthracnose; Apple: scab, powdery mildew, fire blight and crown gall; Peach: leaf curl.

Strawberry: leaf spot Potato: early and late blight, black scurf, leaf roll, and mosaic;

Cucurbits: downy mildew, powdery mildew, wilt; Onion and garlic: purple blotch, and Stemphylium blight; Chillies: anthracnose and fruit rot, wilt and leaf curl; Turmeric: leaf spot Coriander: stem gall Marigold: Botrytis blight; Rose: dieback, powdery mildew and black leaf spot.

Practical

Identification and histopathological studies of selected diseases of field and horticultural crops covered in theory. Field visit for the diagnosis of field problems. Collection and preservation of plant diseased specimens for herbarium.

Note: Students should submit 50 pressed and well-mounted specimens.
Horticulture

Fundamentals of Horticulture 2(1+1)

Theory

Horticulture - its definition and branches, importance and scope; horticultural and botanical classification; climate and soil for horticultural crops; plant propagation-methods and propagating structures; seed dormancy, seed germination, principles of orchard establishment; principles and methods of training and pruning, juvenility and flower bud differentiation; unfruitfulness; pollination, pollinizers and pollinators; fertilization and parthenocarpy; medicinal and aromatic plants; importance of plant bio-regulators in horticulture. Irrigation – methods, Fertilizer application in horticultural crops.

Practical

Production Technology for Vegetable and Spices 2 (1+1)

Theory

Importance of vegetables & spices in human nutrition and national economy, kitchen gardening, brief about origin, area, climate, soil, improved varieties and cultivation practices such as time of sowing, transplanting techniques, planting distance, fertilizer requirements, irrigation, weed management, harvesting and yield, physiological disorders, of important vegetable and spices (Tomato, Brinjal, Chilli, Capsicum, Cucumber, Melons, Gourds, Pumpkin, French bean, Peas; Cole crops such as Cabbage, Cauliflower, Knol-khol; bulb crops such as Onion, Garlic; root crops such as Carrot, Raddish, Beetroot, tuber crops such as Potato; leafy vegetables such as Amaranth, Palak. Perennial vegetables).

Practical

Production Technology for Ornamental Crops, MAPs and Landscaping 2 (1+1)

Theory

Importance and scope of ornamental crops, medicinal and aromatic plants and landscaping. Principles of landscaping. Landscape uses of trees, shrubs and climbers. Production technology of important cut flowers like rose, gerbera, carnation, lilium and orchids under protected conditions and gladiolus, tuberose, chrysanthemum under open conditions. Package of practices for loose flowers like marigold and jasmine under open conditions. Production technology of important medicinal plants like ashwagandha, asparagus, aloe, costus, Cinnamomum, periwinkle, isabgol and aromatic plants like mint, lemongrass, citronella, palmarosa, ocimum, rose, geranium, vetiver. Processing and value addition in ornamental crops and MAPs produce.

Practical

Production Technology for Fruit and Plantation Crops 2(1+1)

Theory

Importance and scope of fruit and plantation crop industry in India; Importance of rootstocks; Production technologies for the cultivation of major fruits-mango, banana, citrus, grape, guava, litchi, papaya, sapota, apple, pear, peach, walnut, almond and; minor fruits- date, ber, pineapple, pomegranate, jackfruit, strawberry, plantation crops-coconut, arecanut, cashew, tea, coffee & rubber.

Practical

Post-harvest Management and Value Addition of Fruits and Vegetables 2(1+1)

Theory

Importance of post-harvest processing of fruits and vegetables, extent and possible causes of post harvest losses; pre-harvest factors affecting postharvest quality, maturity, ripening and changes occurring during ripening; respiration and factors affecting respiration rate; harvesting and field handling; storage (ZECC, cold storage, CA, MA, and hypobaric); value addition concept; principles and methods of preservation; intermediate moisture food- Jam, jelly, marmalade, preserve, candy – Concepts and Standards; fermented and non-fermented beverages. Tomato products- Concepts and Standards; drying/ dehydration of fruits and vegetables – Concept and methods, osmotic drying. Canning — Concepts and Standards, packaging of products.

Practical

Landscaping 3(2+1)

Theory

Importance and scope of landscaping. Principles of landscaping, garden styles and types, terrace gardening, vertical gardening, garden components, adornments, lawn making, rockery, water garden, walk-paths, bridges, other constructed features etc. gardens for special purposes. Trees: selection, propagation, planting schemes, canopy management, shrubs and herbaceous perennials: selection, propagation, planting schemes, architecture. Climber and creepers: importance, selection, propagation, planting, Annuals: selection, propagation, planting scheme, Other garden plants: palms, ferns, grasses and cacti succulents. Pot plants: selection, arrangement, management. Bio-aesthetic planning: definition, need, planning; landscaping of urban and rural areas, Peri-urban landscaping, Landscaping of schools, public places like bus station, railway station, townships, river banks, hospitals, play grounds, airports, industries,
institutions. Bonsai: principles and management, lawn: establishment and maintenance. CAD application.

Practical

Identification of trees, shrubs, annuals, pot plants; Propagation of trees, shrubs and annuals, care and maintenance of plants, potting and repotting, identification of tools and implements used in landscape design, training and pruning of plants for special effects, lawn establishment and maintenance, layout of formal gardens, informal gardens, special type of gardens (sunken garden, terrace garden, rock garden) and designing of conservatory and lathe house. Use of computer software, visit to important gardens/ parks/ institutes.

Protected Cultivation 3(2+1)

Theory

Practical

Raising of seedlings and saplings under protected conditions, use of protrays in quality planting material production, Bed preparation and planting of crop for production, Inter cultural operations, Soil EC and pH measurement, Regulation of irrigation and fertilizers through drip, fogging ad misting.

Hi-tech Horticulture 3(2+1)

Theory

Introduction & importance; nursery management and mechanization; micro propagation of horticultural crops; modern field preparation and planting methods, protected cultivation: advantages, controlled conditions, method and techniques, micro irrigation systems and its components; EC, pH based fertilizer scheduling, canopy management, high density orcharding,
Components of precision farming: Remote sensing, Geographical Information System (GIS), Differential Geo-positioning System (DGPS), Variable Rate applicator (VRA), application of precision farming in horticultural crops (fruits, vegetables and ornamental crops); mechanized harvesting of produce.

Practical

Types of polyhouses and shade net houses, Intercultural operations, tools and equipments identification and application, Micro propagation, Nursery-protrays, micro-irrigation, EC, pH based fertilizer scheduling, canopy management, visit to hi-tech orchard/nursery.
Food Science & Technology

Principles of Food Science and Nutrition 2(2+0)

Theory

Concepts of Food Science (definitions, measurements, density, phase change, pH, osmosis, surface tension, colloidal systems etc.); food composition and chemistry (water, carbohydrates, proteins, fats, vitamins, minerals, flavours, colours, miscellaneous bioactives, important reactions); food microbiology (bacteria, yeast, moulds, spoilage of fresh & processed foods, Production of fermented foods); principles and methods of food processing and preservation (use of heat, low temperature, chemicals, radiation, drying etc.); food and nutrition, Malnutrition (over and under nutrition), nutritional disorders; energy metabolism (carbohydrate, fat, proteins); balanced/ modified diets, Menu planning, New trends in food science and nutrition.

Food Safety and Standards 3(2+1)

Theory

Practical

Water quality analysis physico-chemical and microbiological. Preparation of different types of media. Microbiological Examination of different food samples. Assessment of surface sanitation by swab/rinse method. Assessment of personal hygiene. Biochemical tests for
Agricultural Extension and Communication

Rural Sociology & Educational Psychology 2(2+0)

Theory

Fundamentals of Agricultural Extension Education 3(2+1)

Theory

Education: Meaning, definition & Types; Extension Education- meaning, definition, scope and process; objectives and principles of Extension Education; Extension Programme planning- Meaning, Process, Principles and Steps in Programme Development. Extension systems in India: extension efforts in pre-independence era (Sriniketan, Marthandam, Firka Development Scheme, Gurgaon Experiment, etc.) and post-independence era (Etawah Pilot Project, Nilokheri Experiment, etc.); various extension/ agriculture development programmes launched by ICAR/ Govt. of India (IADP, IAAP, HYVP, KVK, IVLP, ORP, ND,NATP, NAIP, etc.). New trends in agriculture extension: privatization extension, cyber extension/ e-extension, market-led extension, farmer-led extension, expert systems, etc.

Rural Development: concept, meaning, definition; various rural development programmes launched by Govt. of India. Community Dev.-meaning, definition, concept & principles, Philosophy of C.D. Rural Leadership: concept and definition, types of leaders in rural context; extension administration: meaning and concept, principles and functions. Monitoring and evaluation: concept and definition, monitoring and evaluation of extension programmes; transfer of technology: concept and models, capacity building of extension personnel; extension teaching methods: meaning, classification, individual, group and mass contact methods, ICT Applications in TOT (New and Social Media), media mix strategies; communication: meaning and definition; principles and functions of communication, models and barriers to communication. Agriculture journalism; diffusion and adoption of innovation: concept and meaning, process and stages of adoption, adopter categories.
Practical

To get acquainted with university extension system. Group discussion- exercise; handling and use of audio visual equipments and digital camera and LCD projector; preparation and use of AV aids, preparation of extension literature – leaflet, booklet, folder, pamphlet news stories and success stories; Presentation skills exercise; micro teaching exercise; A visit to village to understand the problems being encountered by the villagers/ farmers; to study organization and functioning of DRDA and other development departments at district level; visit to NGO and learning from their experience in rural development; understanding PRA techniques and their application in village development planning; exposure to mass media: visit to community radio and television studio for understanding the process of programme production; script writing, writing for print and electronic media, developing script for radio and television.

Communication Skills and Personality Development 2 (1+1)

Theory

Communication Skills: Structural and functional grammar; meaning and process of communication, verbal and nonverbal communication; listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, précis writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public speaking; group discussion. Organizing seminars and conferences.

Practical

Listening and note taking, writing skills, oral presentation skills; field diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, précis writing, summarizing, abstracting; individual and group presentations.

Entrepreneurship Development and Business Communication 2 (1+1)

Theory

Concept of Entrepreneur, Entrepreneurship Development, Characteristics of entrepreneurs; SWOT Analysis & achievement motivation, Government policy and programs and institutions for entrepreneurship development, Impact of economic reforms on Agribusiness/ Agrienterprises, Entrepreneurial Development Process, Business Leadership Skills, Developing organizational skill (controlling, supervising, problem solving, monitoring & evaluation),

Practical

Assessing entrepreneurial traits, problem solving skills, managerial skills and achievement motivation, exercise in creativity, time audit through planning, monitoring and supervision, identification and selection of business idea, preparation of business plan and proposal writing, visit to entrepreneurship development institute and entrepreneurs.

Agricultural Journalism 3(2+1)

Theory

Agricultural Journalism: The nature and scope of agricultural journalism characteristics and training of the agricultural journalist, how agricultural journalism is similar to and different from other types of journalism. Newspapers and magazines as communication media: Characteristics; kinds and functions of newspapers and magazines, characteristics of newspaper and magazine readers. Form and content of newspapers and magazines: Style and language of newspapers and magazines, parts of newspapers and magazines. The agricultural story: Types of agricultural stories, subject matter of the agricultural story, structure of the agricultural story. Gathering agricultural information: Sources of agricultural information, interviews, coverage of events, abstracting from research and scientific materials, wire services, other agricultural news sources. Writing the story: Organizing the material, treatment of the story, writing the news lead and the body, readability measures. Illustrating agricultural stories: Use of photographs, use of artwork (graphs, charts, maps, etc.), writing the captions. Editorial mechanics: Copy reading, headline and title writing, proofreading, lay outing.

Practical

Practice in interviewing. Covering agricultural events. Abstracting stories from research and scientific materials and from wire services. Writing different types of agricultural stories. Selecting pictures and artwork for the agricultural story. Practice in editing, copy reading, headline and title writing, proofreading, layouting. Testing copy with a readability formula. Visit to a publishing office.
RAWE - Village Attachment 14 (0+14)

Practical

General orientation and on campus training by different faculties (1 week)

Village attachment (8 week)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Orientation and Survey of Village</td>
<td>1 week</td>
</tr>
<tr>
<td>2.</td>
<td>Agronomical Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>3.</td>
<td>Plant Protection Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>4.</td>
<td>Soil Improvement Interventions (Soil sampling and testing)</td>
<td>1 week</td>
</tr>
<tr>
<td>5.</td>
<td>Fruit and Vegetable production interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>6.</td>
<td>Food Processing and Storage interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>7.</td>
<td>Animal Production Interventions</td>
<td>1 week</td>
</tr>
<tr>
<td>8.</td>
<td>Extension and Transfer of Technology activities</td>
<td>1 week</td>
</tr>
</tbody>
</table>

Unit attachment in University/ College/ KVK/ Research Station Attachment (5 week)

RAWE – Agro Industrial Attachment 4 (0+4)

Practical

- Students shall be placed in Agro-and Cottage industries and Commodities Boards for 03 weeks.
- Industries include Seed/Sapling production, Pesticides-insecticides, Post harvest-processing value addition, Agri-finance institutions, etc.

Activities and Tasks during Agro-Industrial Attachment Programme

- Acquaintance with industry and staff
- Study of structure, functioning, objective and mandates of the industry
- Study of various processing units and hands-on trainings under supervision of industry staff
- Ethics of industry
- Employment generated by the industry
- Contribution of the industry promoting environment
• Learning business network including outlets of the industry
• Skill development in all crucial tasks of the industry
• Documentation of the activities and task performed by the students
• Performance evaluation, appraisal and ranking of students

RAWE – Plant Clinic 2 (0+2)

Diagnosing and making recommendations on all aspects of crop health through field visits and on queries received from growers.

Biochemistry/ Physiology/ Microbiology/ Environmental Sciences/ Forestry

Agricultural Microbiology 2(1+1)

Theory

Practical

Introduction to microbiology laboratory and its equipments; Microscope- parts, principles of microscopy, resolving power and numerical aperture. Methods of sterilization. Nutritional media and their preparations. Enumeration of microbial population in soil- bacteria, fungi, actinomycetes. Methods of isolation and purification of microbial cultures. Isolation of *Rhizobium* from legume root nodule. Isolation of *Azotobacter* from soil, Isolation of *Azospirillum* from roots, Isolation of BGA. Staining and microscopic examination of microbes.

Biopesticides & Biofertilizers 3(2+1)

Theory

History and concept of biopesticides. Importance, scope and potential of biopesticide. Definitions, concepts and classification of biopesticides viz. pathogen, botanical pesticides, and biorational. Botanicals and their uses. Mass production technology of bio-pesticides. Virulence,

Practical

Fundamentals of Crop Physiology 2(1+1)

Theory

Introduction to crop physiology and its importance in Agriculture; plant cell: an overview; diffusion and osmosis; absorption of water, transpiration and Stomatal Physiology; Mineral nutrition of Plants: Functions and deficiency symptoms of nutrients, nutrient uptake mechanisms; Photosynthesis: Light and Dark reactions, C3, C4 and CAM plants; Respiration: Glycolysis, TCA cycle and electron transport chain; Fat Metabolism: Fatty acid synthesis and Breakdown; Plant growth regulators: Physiological roles and agricultural uses, Physiological aspects of growth and development of major crops: Growth analysis, Role of Physiological growth parameters in crop productivity.
Practical

Study of plant cells, structure and distribution of stomata, imbibitions, osmosis, plasmolysis, measurement of root pressure, rate of transpiration, Separation of photosynthetic pigments through paper chromatography, Rate of transpiration, photosynthesis, respiration, tissue test for mineral nutrients, estimation of relative water content, Measurement of photosynthetic CO₂ assimilation by Infra Red Gas Analyser (IRGA).

Fundamentals of Plant Biochemistry and Biotechnology 3(2+1)

Theory

Concepts and applications of plant biotechnology: Scope, organ culture, embryo culture, cell suspension culture, callus culture, anther culture, pollen culture and ovule culture and their applications; Micro-propagation methods; organogenesis and embryogenesis, Synthetic seeds and their significance; Embryo rescue and its significance; somatic hybridization and cybrids; Somaclonal variation and its use in crop improvement; cryo-preservation; Introduction to recombinant DNA methods: physical (Gene gun method), chemical (PEG mediated) and Agrobacterium mediated gene transfer methods; Transgenics and its importance in crop
improvement; PCR techniques and its applications; RFLP, RAPD, SSR; Marker Assisted Breeding in crop improvement; Biotechnology regulations.

Practical

Environmental Studies and Disaster Management 3 (2+1)

Theory

Multidisciplinary nature of environmental studies Definition, scope and importance.

Natural Resources: Renewable and non-renewable resources, Natural resources and associated problems. a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. e) Energy resources: Growing energy needs, renewable and nonrenewable energy sources, use of alternate energy sources. Case studies. f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. • Role of an individual in conservation of natural resources. • Equitable use of resources for sustainable lifestyles.

Disaster Management

Natural Disasters- Meaning and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.

Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents.

Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction. Concept of disaster management, national disaster
management framework; financial arrangements; role of NGOs, community-based organizations and media. Central, state, district and local administration; armed forces in disaster response; disaster response; police and other organizations.

Practical

Pollution case studies. Case Studies- Field work: Visit to a local area to document environmental assets river/ forest/ grassland/ hill/ mountain, visit to a local polluted site-Urban/Rural/Industrial/ Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc.

Introduction to Forestry 2(1+1)

Theory

Introduction – definitions of basic terms related to forestry, objectives of silviculture, forest classification, salient features of Indian Forest Policies. Forest regeneration, Natural regeneration - natural regeneration from seed and vegetative parts, coppicing, pollarding, root suckers; Artificial regeneration – objectives, choice between natural and artificial regeneration, essential preliminary considerations. Crown classification. Tending operations – weeding, cleaning, thinning – mechanical, ordinary, crown and advance thinning. Forest mensuration – objectives, diameter measurement, instruments used in diameter measurement; Non instrumental methods of height measurement - shadow and single pole method; Instrumental methods of height measurement - geometric and trigonometric principles, instruments used in height measurement; tree stem form, form factor, form quotient, measurement of volume of felled and standing trees, age determination of trees. Agroforestry – definitions, importance, criteria of selection of trees in agroforestry, different agroforestry systems prevalent in the country, shifting cultivation, taungya, alley cropping, wind breaks and shelter belts, home gardens. Cultivation practices of two important fast growing tree species of the region.

Practical

Identification of tree-species. Diameter measurements using calipers and tape, diameter measurements of forked, buttressed, fluted and leaning trees. Height measurement of standing trees by shadow method, single pole method and hypsometer. Volume measurement of logs
Statistics, Computer Application and IPR

Agri-Informatics 2(1+1)

Theory

Introduction to Computers, Operating Systems, definition and types, Applications of MSOffice for document creation & Editing, Data presentation, interpretation and graph creation, statistical analysis, Mathematical expressions, Database, concepts and types, uses of DBMS in Agriculture, World Wide Web (WWW): Concepts and components. Introduction to computer programming languages, concepts and standard input/output operations.

e-Agriculture, concepts and applications, Use of ICT in Agriculture. Computer Models for understanding plant processes. IT application for computation of water and nutrient requirement of crops, Computer-controlled devices (automated systems) for Agri-input management, Smartphone Apps in Agriculture for farm advises, market price, postharvest management etc; Geospatial technology for generating valuable agri-information. Decision support systems, concepts, components and applications in Agriculture, Agriculture Expert System, Soil Information Systems etc for supporting Farm decisions. Preparation of contingent crop-planning using IT tools.

Practical

Study of Computer Components, accessories, practice of important DOS Commands. Introduction of different operating systems such as windows, Unix/ Linux, Creating, Files & Folders, File Management. Use of MS-WORD and MS Power-point for creating, editing and presenting a scientific Document. MS-EXCEL - Creating a spreadsheet, use of statistical tools, writing expressions, creating graphs, analysis of scientific data. MS-ACCESS: Creating Database, preparing queries and reports, demonstration of Agri-information system. Introduction to World Wide Web (WWW). Introduction of programming languages. Hands on Crop Simulation Models (CSM) such as DSSAT/Crop-Info/CropSyst/ Wofost; Computation of water and nutrient requirements of crop using CSM and IT tools. Introduction of Geospatial Technology for generating valuable information for Agriculture. Hands on Decision Support System. Preparation of contingent crop planning.
Statistical Methods 2(1+1)

Theory

Practical

Intellectual Property Rights 1(1+0)

Theory

Introduction and meaning of intellectual property, brief introduction to GATT, WTO, TRIPs and WIPO, Treaties for IPR protection: Madrid protocol, Berne Convention, Budapest treaty, etc.

Convention on Biological Diversity, International treaty on plant genetic resources for food and agriculture (ITPGRFA). Indian Biological Diversity Act, 2002 and its salient features, access and benefit sharing.
Animal Production

Livestock & Poultry Management 4 (3+1)

Theory

Important Indian and exotic breeds of cattle, buffalo, sheep, goat, swine and poultry. Improvement of farm animals and poultry.

Introduction of livestock and poultry diseases. Prevention (including vaccination schedule) and control of important diseases of livestock and poultry.

Practical

Language

Comprehension and Communication Skills in English 2(1+1)

Theory

Practical

Bridge Courses

Agricultural Heritage 1(1+0)

Theory

Introduction of Indian agricultural heritage; Ancient agricultural practices, Relevance of heritage to present day agriculture; Past and present status of agriculture and farmers in society; Journey of Indian agriculture and its development from past to modern era; Plant production and protection through indigenous traditional knowledge; Crop voyage in India and world; Agriculture scope; Importance of agriculture and agricultural resources available in India; Crop significance and classifications; National agriculture setup in India; Current scenario of Indian agriculture; Indian agricultural concerns and future prospects.

Elementary Mathematics 2(2+0)

Theory

Straight lines: Distance formula, section formula (internal and external division), Change of axes (only origin changed), Equation of co-ordinate axes, Equation of lines parallel to axes, Slope-intercept form of equation of line, Slope-point form of equation of line, Two point form of equation of line, Intercept form of equation of line, Normal form of equation of line, General form of equation of line, Point of intersection of two st. lines, Angles between two st. lines, Parallel lines, Perpendicular lines, Angle of bisectors between two lines, Area of triangle and quadrilateral.

Circle: Equation of circle whose centre and radius is known, General equation of a circle, Equation of circle passing through three given points, Equation of circle whose diameters is line joining two points \((x_1, y_1)\) & \((x_2, y_2)\), Tangent and Normal to a given circle at given point (Simple problems), Condition of tangency of a line \(y = mx + c\) to the given circle \(x^2 + y^2 = a^2\). Definition of function, limit and continuity, Simple problems on limit, Simple problems on continuity, Differentiation of \(x^n\), \(e^x\), \(\sin x\) and \(\cos x\) from first principle, Derivatives of sum, difference, product and quotient of two functions, Differentiation of functions of functions.

Differential Calculus: (Simple problem based on it), Logarithmic differentiation (Simple problem based on it), Differentiation by substitution method and simple problems based on it, Differentiation of Inverse Trigonometric functions. Maxima and Minima of the functions of the form \(y=f(x)\) (Simple problems based on it).
Integral Calculus: Integration of simple functions, Integration of Product of two functions, Integration by substitution method, Definite Integral (simple problems based on it), Area under simple well-known curves (simple problems based on it).

Matrices and Determinants: Definition of Matrices, Addition, Subtraction, Multiplication, Transpose and Inverse up to 3rd order, Properties of determinants up to 3rd order and their evaluation.

Introductory Biology 2(1+1)

Theory

Practical

Life Skills I 2(1+1)

Soft skills and its importance: Pleasure and pains of transition from an academic environment to work-environment. Need for change. Fears, stress and competition in the professional world. Importance of positive attitude, self-motivation and continuous knowledge upgradation.

Self Confidence: Characteristics of the person perceived, characteristics of the situation, Characteristics of the Perceiver. Attitude, Values, Motivation, Emotion Management, Steps to like yourself, Positive Mental Attitude, Assertiveness.

Presentations: Preparations, Outlining, Hints for efficient practice, Last minute tasks, means of effective presentation, language, Gestures, Posture, Facial expressions, Professional attire.

Vocabulary building: A brief introduction into the methods and practices of learning vocabulary. Learning how to face questions on antonyms, synonyms, spelling error, analogy etc. Faulty comparison, wrong form of words and confused words like understanding the nuances of spelling changes and wrong use of words.

Listening Skills: The importance of listening in communication and how to listen actively.

Prepositions and Articles: A experiential method of learning the uses of articles and prepositions in sentences is provided.

Problem solving: Number System; LCM &HCF; Divisibility Test; Surds and Indices; Logarithms; Ratio, Proportions and Variations; Partnership; Time speed and distance; work time problems.

Data Interpretation: Numerical Data Tables; Line Graphs; Bar Charts and Pie charts; Caselet Forms; Mix Diagrams; Geometrical Diagrams and other forms of Data Representation.

Logical Reasoning: Family Tree; Linear Arrangements; Circular and Complex Arrangement; Conditionalities and Grouping; Sequencing and Scheduling; Selections; Networks; Codes; Cubes; Venn Diagram in Logical Reasoning.

Life Skills II 2 (1+1)

Group Discussions: Advantages of Group Discussions, Structured GD – Roles, Negative roles to be avoided, Personality traits to do well in a GD, Initiation techniques, How to perform in a group discussion, Summarization techniques.

Listening Comprehension advanced: Exercise on improving listening skills, Grammar basics: Topics like clauses, punctuation, capitalization, number agreement, pronouns, tenses etc.

Reading Comprehension advanced: A course on how to approach middle level reading comprehension passages.

Problem solving – Money Related problems; Mixtures; Symbol Based problems; Clocks and Calendars; Simple, Linear, Quadratic and Polynomial Equations; Special Equations; Inequalities; Functions and Graphs; Sequence and Series; Set Theory; Permutations and Combinations; Probability; Statistics.

Data Sufficiency: Concepts and Problem Solving.

Non-Verbal Reasoning and Simple Engineering Aptitude: Mirror Image; Water Image; Paper Folding; Paper Cutting; Grouping of Figures; Figure Formation and Analysis; Completion of Incomplete Pattern; Figure Matrix; Miscellaneous.

Special Aptitude: Cloth, Leather, 2D and 3D Objects, Coin, Match Sticks, Stubs, Chalk, Chess Board, Land and geodesic problems etc., Related Problems.

Life Skills III 2 (1+1)

Facing an Interview: Foundation in core subject, Industry Orientation/ Knowledge about the company, Professional Personality, Communication Skills, activities before interview, upon entering interview room, during the interview and at the end. Mock interviews.

Advanced Grammar: Topics like parallel construction, dangling modifiers, active and passive voices, etc.

Syllogisms, Critical reasoning: A course on verbal reasoning. Listening Comprehension advanced: An exercise on improving listening skills.

Reading Comprehension advanced: A course on how to approach advanced level of reading, comprehension passages. Exercises on competitive exam questions.

Specific Training: Solving campus recruitment papers, National level and state level competitive examination papers; Speed mathematics; Tackling aptitude problems asked in interview; Techniques to remember (In Mathematics). Lateral Thinking problems. Quick checking of
answers techniques; Techniques on elimination of options, Estimating and predicting correct answer; Time management in aptitude tests; Test taking strategies.

Pass-Fail Courses

Physical Education and Yoga Practices 2(0+2) I Semester

1. Teaching of skills of Football – demonstration, practice of the skills, correction, involvement in game situation (For girls teaching of Tennikoit)
2. Teaching of different skills of Football – demonstration, practice of the skills, correction, involvement in game situation (For girls teaching of Tennikoit)
3. Teaching of advance skills of Football – involvement of all the skills in game situation with teaching of rules of the game
4. Teaching of skills of Basketball – demonstration, practice of the skills, correction of skills, involvement in game situation
5. Teaching of skills of Basketball – demonstration, practice of the skills, involvement in game situation
6. Teaching of skills of Basketball – involvement of all the skills in game situation with teaching of rule of the game
7. Teaching of skills of Kabaddi – demonstration, practice of the skills, correction of skills, involvement in game situation
8. Teaching of skills of Kabaddi – demonstration, practice of the skills, correction of skills, involvement in game situation
9. Teaching of advance skills of Kabaddi – involvement of all the skills in game situation with teaching of rule of the game
10. Teaching of skills of Ball Badminton – demonstration, practice of the skills, correction of skills, involvement in game situation
11. Teaching of skills of Ball Badminton – involvement of all the skills in game situation with teaching of rule of the game
12. Teaching of some of Asanas – demonstration, practice, correction and practice
13. Teaching of some more of Asanas – demonstration, practice, correction and practice
14. Teaching of skills of Table Tennis – demonstration, practice of skills, correction and practice and involvement in game situation
15. Teaching of skills of Table Tennis – demonstration, practice of skills, correction and practice and involvement in game situation
16. Teaching of skills of Table Tennis – involvement of all the skills in game situation with teaching of rule of the game
17. Teaching – Meaning, Scope and importance of Physical Education
18. Teaching – Definition, Type of Tournaments
19. Teaching – Physical Fitness and Health Education
20. Construction and laying out of the track and field (*The girls will have Tennikoit and Throw Ball).

Physical Education and Yoga Practices 2(0+2) II Semester

1. Teaching of skills of Hockey – demonstration practice of the skills and correction
2. Teaching of skills of Hockey – demonstration practice of the skills and correction. And involvement of skills in games situation
3. Teaching of advance skills of Hockey – demonstration practice of the skills and correction, Involvement of all the skills in games situation with teaching of rules of the game
4. Teaching of skills of Kho-Kho – demonstration practice of the skills and correction
5. Teaching of skills of Kho-Kho – demonstration practice of the skills and correction, Involvement of the skills in games situation
6. Teaching of advance skills of Kho-Kho – demonstration practice of the skills and correction, Involvement of all the skills in games situation with teaching of rules of the game
7. Teaching of different track events – demonstration practice of the skills and correction
8. Teaching of different track events – demonstration practice of the skills and correction
9. Teaching of different track events – demonstration practice of the skills and correction with competition among them
10. Teaching of different field events – demonstration practice of the skills and correction
11. Teaching of different field events – demonstration practice of the skills and correction
12. Teaching of different field events – demonstration practice of the skills and correction
13. Teaching of different field events – demonstration practice of the skills and correction with competition among them
14. Teaching of different asanas – demonstration practice and correction
15. Teaching of different asanas – demonstration practice and correction
16. Teaching of different asanas – demonstration practice and correction
17. Teaching of different asanas – demonstration practice and correction
18. Teaching of weight training – demonstration practice and correction
19. Teaching of circuit training – demonstration practice and correction
20. Teaching of calisthenics – demonstration practice and correction

Cultural Education-I 2(2+0)

Theory

Introduction: The necessity of cultural education, know your University, meaning of college prayer, know your Chancellor - introduction to Amma

Indian Philosophy and Practice: Purusharthas (goals of life), Varnasrama Dharma, Doctrine of Karma, Practices for Happiness

Indian Culture and Ethos: Symbols of Indian culture, festivals of India, living in harmony with nature, relevance of our epics in this scientific age, lessons from Ramayana, Mahatmas

Cultural Education-II 2(2+0)

Theory

To the world from India, education system in India, insights from Mahabharata, The human personality, India’s scientific system for personality refinement, The Vedas: an overview, One God-many forms, Bhagavad Gita – The handbook for human life, examples of Karma Yoga in modern India, Chanakya’s guidelines for successful life, role of women, conversations with Amma
Courses Offered in VIII Semester

Modules for Skill Development and Entrepreneurship: A student has to register 20 credits opting for two modules of (0+10) credits each (total 20 credits) from the package of modules in the VIII semester.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Title of the Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Production Technology for Bioagents and Biofertilizer</td>
<td>0+10</td>
</tr>
<tr>
<td>2.</td>
<td>Seed Production and Technology</td>
<td>0+10</td>
</tr>
<tr>
<td>3.</td>
<td>Mushroom Cultivation Technology</td>
<td>0+10</td>
</tr>
<tr>
<td>4.</td>
<td>Soil, Plant, Water and Seed Testing</td>
<td>0+10</td>
</tr>
<tr>
<td>5.</td>
<td>Commercial Beekeeping</td>
<td>0+10</td>
</tr>
<tr>
<td>6.</td>
<td>Poultry Production Technology</td>
<td>0+10</td>
</tr>
<tr>
<td>7.</td>
<td>Commercial Horticulture</td>
<td>0+10</td>
</tr>
<tr>
<td>8.</td>
<td>Floriculture and Landscaping</td>
<td>0+10</td>
</tr>
<tr>
<td>9.</td>
<td>Food Processing</td>
<td>0+10</td>
</tr>
<tr>
<td>10.</td>
<td>Agriculture Waste Management</td>
<td>0+10</td>
</tr>
<tr>
<td>11.</td>
<td>Organic Production Technology</td>
<td>0+10</td>
</tr>
<tr>
<td>12.</td>
<td>Commercial Sericulture</td>
<td>0+10</td>
</tr>
</tbody>
</table>

Note: In addition to above ELP modules other important modules may be given to the students by University.