Back close

Core Level Spectra of Organic Molecules Adsorbed on Graphene

Publication Type : Journal Article

Publisher : Materials

Source : Materials , Volume 11, Issue 4, p.518 (2018)

Url : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5951364/

Keywords : core excited spectra, magnetism in graphene, organic molecules on graphene

Campus : Bengaluru

School : School of Engineering

Department : Electronics and Communication

Year : 2018

Abstract : We perform first principle calculations based on density functional theory to investigate the effect of the adsorption of core-excited organic molecules on graphene. We simulate Near Edge X-ray absorption Fine Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) at the N and C edges for two moieties: pyridine and the pyridine radical on graphene, which exemplify two different adsorption characters. The modifications of molecular and graphene energy levels due to their interplay with the core-level excitation are discussed. We find that upon physisorption of pyridine, the binding energies of graphene close to the adsorption site reduce mildly, and the NEXAFS spectra of the molecule and graphene resemble those of gas phase pyridine and pristine graphene, respectively. However, the chemisorption of the pyridine radical is found to significantly alter these core excited spectra. The C 1s binding energy of the C atom of graphene participating in chemisorption increases by ∼1 eV, and the C atoms of graphene alternate to the adsorption site show a reduction in the binding energy. Analogously, these C atoms also show strong modifications in the NEXAFS spectra. The NEXAFS spectrum of the chemisorbed molecule is also modified as a result of hybridization with and screening by graphene. We eventually explore the electronic properties and magnetism of the system as a core-level excitation is adiabatically switched on.

Cite this Research Publication : Abhilash Ravikumar, Brivio, G. Paolo, and Fratesi, G., “Core Level Spectra of Organic Molecules Adsorbed on Graphene”, Materials , vol. 11, no. 4, p. 518, 2018.

Admissions Apply Now