

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research paper

Construction of Inverse Unit Regular Monoids from a Semilattice and a Group

Sreeja V.K.*

Department of Mathematics, Amrita Vishwa Vidyapeetham, Amritapuri campus, India *Corresponding author E-mail: sreeja@.am.amrita.edu

Abstract

This paper is a continuation of a previous paper [6] in which the structure of certain unit regular semigroups called R-strongly unit regular monoids has been studied. A monoid S is said to be unit regular if for each element $s \in S$ there exists an element u in the group of units G of S such that s = sus. Hence $s = suu^{-1}$ where su is an idempotent and u^{-1} is a unit. A unit regular monoid S is said to be a unit regular inverse monoid if the set of idempotents of S form a semilattice. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. Here we give a detailed study of inverse unit regular monoids and the results are mainly based on [10]. The relations between the semilattice of idempotents and the group of units in unit regular inverse monoids are better identified in this case.

Keywords: Inverse monoids, Unit regular monoids, Semi lattice, group.

1. Introduction

Throughout this paper let E (= E(S)) denote the semilattice of idempotents and G (= G(S)) denote the group of units of S.

Proposition 1.1 ([4]). Let S be a regular monoid. Then S is unit regular if and only if for each $s \in S$ there is an idempotent $x \in E$ and $g \in G$ such that s = xg.

Let L, R be two of Green's relations and let L_e , R_e be the L-class containing e and R-class containing e respectively. Then we have the following proposition.

Proposition 1.2 ([2]). Let S be an inverse monoid with G = G(S)and E = E(S). Then the following conditions are equivalent on S. (i) S is unit regular (ii) $L_e = Ge$ for every $e \in E$. (iii) $R_e = eG$ for every $e \in E$.

Definition 1.3 ([4]). Let G be a group and E a non empty set. Then G is said to act on E if there is a function from $G \times E$ to E usually denoted by $(u, e) \rightarrow u^* e$ such that $1^* e = e$ for $e \in E$ and every for $u_1, u_2 \in G$ and $e \in E$, $(u_1u_2) * e = u_1 * (u_2 * e)$

Definition 1.4. ([5]). Let S be a regular semigroup and the sandwich set of $e, f \in E(S)$ be denoted by S(e, f). Then

$$S(e, f) = \left\{ h \in E(S) : he = fh = h \text{ and } ehf = ef \right\}$$

It is well known that the set of idempotents E(S) of an inverse semigroup S is a semilattice. Further the relations L|E(S) and

R|E(S) are trivial.

2. Inverse Unit Regular Monoids

In this section we study about the construction of some unit regular inverse monoids. Throughout this section let x, y, z, k, wdenote the elements of E and g, h elements of G.

Theorem 2.1. Let *E* be a semilattice (that is a commutative band) with a maximum element 1 and G be a group acting on E. That is for each $g \in G$, the map $x \rightarrow g * x$ is an isomorphism of E.

For each $x \in E$ suppose there exist a collection of subgroups of G say G(x) satisfying the following conditions. (i) 1}

$$G(1) = {$$

(ii)
$$gG(x)g^{-1} = G(g * x), g \in G, x \in E$$

(iii) For any k, x in E,
$$G(x) \subseteq G(kx) = G(xk)$$

(iv) If
$$g \in G(x)$$
, then $g^* x = x$ and

$$xy = x(g * y)$$
 for $x, y \in E$.

Then on $E \times G$ define a relation ~ as follows. For (x, g), (y, h) $\in E \times G$, $(x, g) \sim (y, h)$ if x = y and $gh^{-1} \in G(x)$. Let $T = (E \times G) / \sim$ and define a product on T as given below. For [x, g], $[y, h] \in T$, [x, g] [y, h] = [x(g*y), gh] where the equivalence class of (x, g) of $E \times G$ under ~ is denoted by [x, g]

.Then T is a unit regular inverse monoid with semilattice of idempotents isomorphic to E and group of units isomorphic to G. **Proof:**

In order to prove the theorem we shall prove the following lemmas.

Lemma 2. 2. Let $F = E \times G$. Let $\psi : F \times F \rightarrow F/\sim$ be defined as $((x, g), (y, h))\psi = [x (g \bigstar y), g h]$. Then $((x, g), (y, h))\psi = ((x, g'), (y, h'))\psi$ whenever $(x, g) \sim (x, g')$ and $(y, h) \sim (y, h')$.

Proof: We prove that $((x,g), (y, h))\psi = ((x,g'), (y,h'))\psi$ whenever $(x, g) \sim (x,g')$ and $(y, h) \sim (y,h')$. We will show this in two steps. That is we will show that

(i) $((x, g), (y, h))\psi = ((x, g'), (y, h))\psi$ if $(x, g) \sim (x, g')$ and

(ii) $((x, g), (y, h))\psi = ((x, g), (y, h'))\psi$ if $(y, h) \sim (y, h')$.

Consider the first case. Let $(x, g) \sim (x, g')$. Hence $gg'^{-1} \in G(x)$. Let $k \in S(x, g * y)$. Let $gg'^{-1} = h$. Then $h \in G(x)$ and g = hg'. Hence $k \in S(x, (hg') * y)$.

Hence $h^{-1} * k \in S(h^{-1} * x, g' * y)$.

Since $h \in G(x)$, $h^{-1} \in G(x)$. Hence $h^{-1} * x = x$, by property (iv). That is $h^{-1} * k \in S(x, g' * y)$. Let $h^{-1} * k =$ k'. If $h \in G(x)$, then $h^{-1} \in G(x)$ and $xk = x(h^{-1} * k)$, property (iv). is xk = xk'. That by Choose k = x(g * y) and k' = x(g'*y). Then x x(g * y) =x x(g'*y). Hence x(g*y) = x(g'*y). Also [x(g*y), gh] =[x(g'*y), g'h] only if $(gh)(g'h)^{-1} = gg'^{-1} \in G(x(g*y))$. By property (iii) $G(x) \subseteq G((g^* y)x) = G(x (g^* y))$. Hence $((x, g), (y, h))\psi = ((x, g'), (y, h))\psi$ whenever $(x, g) \sim (x, g')$. Next let $(y, h) \sim (y, h')$. Then we will prove that $((x, g), (y, h))\psi = ((x + y))\psi$,g), (y, h'))ψ. Since (y, h) ∼ (y, h') we get that $hh'^{-1} \in G(y)$. We have to prove $[x (g^*y), gh] = [x (g^*y), gh']$. That is we have to show that $(gh)(gh')^{-1} = ghh'^{-1}g^{-1} \in G(x(g*y))$.By property (ii) since $hh'^{-1} \in G(y)$ we get $ghh'^{-1} g^{-1} \in G(g \neq y)$. By property (iii), $ghh'^{-1}g^{-1} \in G(x (g \neq y))$. Now coming to the general case, $((x, g), (y, h))\psi$ ((x, g'), (y,h)) ψ , by step 1 ((x, g'), (y,

h')) ψ , by step 2

Since the mapping ψ is well defined, the product in *T* namely [*x*, *g*] [*y*, *h*] = [*x*(*g*******y*), *gh*]. In the following sections let *T* denote $(E \times G)/\sim$

Lemma 2.3. *T* with the product defined by $[x, g] [y, h] = [x(g \bigstar y), gh]$ is a monoid.

Proof: To prove T is a semigroup it is enough to show that the associative property holds.

[x, g] ([y, h] [z, j]) = [x, g] ([y(h*z),

hj]) = [x (g*(y (h*z)),

 $[x \qquad (g^*y)] = [x \qquad (g^*y)]$

 $(g^{*}(h^{*}z)), ghj]$

 $= [x \quad (g^*y)$ $((gh)^*z), ghj], \text{ since } G \text{ is a group acting on } E.$ Also $([x, g] [y, h]) [z, j] = [x (g^*y), gh] [z, j]$ $= [x (g^*y) ((gh)^*z)$

, ghj]

Now

Now we prove that [1, 1] is the identity element of *T*. Now, [*x*, *h*] [1, 1] = [x(h*1), *h*] = [x, *h*], since the map $x \rightarrow h*x$ is an isomorphism of *E*. Also [1, 1] [x, *h*] =[(1*x), *h*] = [x, *h*] by property (iv). Therefore [1, 1] [x, *h*] = [x, *h*]. Hence *T* is a monoid. **Lemma 2.4.** *The set of idempotents of T is given by* $E(T) = \{ [x, 1] : x \in E \}$.

Proof: First we trace out the idempotents of *T* namely *E*(*T*)). We will show that *E*(*T*) = {[*x*,1]: $x \in E$ }. Now [*x*, 1] [*x*, 1] = [*x*(1 **x*), 1] = [x^2 , 1] = [*x*, 1]. So [*x*, 1] [*x*, 1] = [*x*, 1]. Also if [*x*, *g*] $\in E(T)$, then [*x*, *g*] = [*x*, *g*] implies [*x*(*g*x*), *g²*] = [*x*, *g*].

Thus $x(g^*x) = x$ and $g \in G(x)$. Hence [x, g] = [x, 1].

Now to identify G(T) it is necessary to have the following result. Lemma 2.5. The group of units of T is given by $G(T) = \{[1,h] : h \in G\}$.

Proof: Now $[1, h] [1, h^{-1}] = [h *1, 1] = [1, 1]$. That is, $[1, h] [1, h^{-1}] = [1, 1]$. Similarly $[1, h^{-1}] [1, h] = [1, 1]$. Therefore the elements of the form $[1, h] \in G(T)$. Also if $[x, h] \in G(T)$, then there exists $[y, h'] \in T$ such that [x, h] [y, h'] = [1, 1] and [y, h'] [x, h] = [1, 1]. Hence [x(h *y), hh'] = [1, 1] and [y(h'*x), h'h] = [1, 1]. So x(h *y) = y(h'*x) = 1. Since $x(h *y) \le x$, we get $1 \le x$. Also $x \le 1$. Hence x = 1. So h *y = 1. Similarly y = (h'*x) = 1. Hence hh', $h'h \in G(1) = \{1\}$, by Property (i). Therefore hh' = h'h = 1. So, $h' = h^{-1}$. That is [x, h] = [1, h] and $[y, h'] = [1, h^{-1}]$. Consequently $G(T) = \{[1, h]: h \in G\}$, with $[1, h]^{-1} = [1, h^{-1}]$.

Lemma 2.6. *T* is a unit regular monoid.

Proof: We prove the unit regularity of *T* by showing that every element [x, h] of *T* is a product [x, 1] [1, h] where $[x, 1] \in E(T)$ and $[1, h] \in G(T)$. Now, [x, 1] [1, h] = [x, h]. So *T* is a unit regular monoid.

Remark: It can be seen that for $[x, h] \in T$ we can write $[x, h] = [1, h] [h^{-1} \neq x, 1]$.

Lemma 2.7. E(T) is a semilattice.

Proof: If x and y are elements in E, xy is an idempotent since E is a semilattice. Also [x,1][y,1] = [x(1*y), 1] = [xy, 1], since G is a group acting on E, 1*y = y. Also [y, 1][x, 1] = [y(1*x),1] = [yx, 1]. Since E is a semilattice, xy = yx. Hence [x,1][y,1] = [y, 1][x, 1].

Lemma 2. 8. G(T) is isomorphic to G (as groups) and E(T) is isomorphic to E as monoids

Proof: Now let $\varphi_1: G \to G$ (*T*) be defined as $g\varphi_1 = [1, g]$. Then $(g_1g_2)\varphi_1 = [1, g_1g_2]$. Also $(g_1\varphi_1) (g_2\varphi_1) = [1, g_1] [1, g_2] = [1 (g_1 \bigstar 1), g_1g_2] = [1, g_1g_2]$, since $x \to g \And x$ is an isomorphism and $g_1 \bigstar 1 = 1$. Therefore φ_1 is a homomorphism. φ_1 is evidently onto. φ_1 is one one since $g_1\varphi_1 = g_2\varphi_1$ implies that $[1, g_1] = [1, g_2]$. Hence $g_1g_2^{-1} \in G(1) = \{1\}$, by property (i) .So $g_1 = g_2$. Therefore φ_1 is an isomorphism of groups.

Let $\varphi_2 : E \to E(T)$ be defined as $x\varphi_2 = [x, 1]$. Then φ_2 is evidently one one and onto. We will prove that φ_2 is a isomorphism. $xy\varphi_2 = [xy, 1]$. Also $x\varphi_2 y\varphi_2 = [x, 1] [y, 1] = [x(1 * y), 1] = [x y, 1]$ So φ_2 is an isomorphism of semilattices. Also $1\varphi_2 = [1, 1]$.

From the above lemmas we have the **Theorem 2.1**.

Corollary 2.9. Let *E* be a semilattice (that is a commutative band) with a maximum element 1 and *G* be a group acting on *E*. Suppose that for each $x \in E$ their corresponds a subgroup G(x) of *G* satisfying the following:

(i) $G(1) = \{1\}$

(ii) For any k, x in E, $G(x) \subseteq G(kx) = G(xk)$

(iii) $gG(x)g^{-1} = G(g * x), g \in G, x \in E$

Then on $E \times G$ define a relation ~ as follows. For (x, g), $(y, h) \in E \times G$, $(x, g) \sim (y, h)$ if x = y and $gh^{-1} \in G(x)$. Let $T = (E \times G)$ /~ and define a product on T as given below.

For [x, g], $[y, h] \in T$, [x, g] [y, h] = [xy, gh] where the

equivalence class of (x, g) of $E \times G$ under ~ is denoted by [x, g]. Then *T* is a unit regular inverse monoid with semilattice of idempotents isomorphic to *E* and *E*- centralizing group of units isomorphic to *G*. *T* is in particular a Clifford semigroup.

Acknowledgement

I would like to acknowledge that the results of this paper are mainly based on [10].

References

- A.R. Rajan and V.K. Sreeja, Construction of a R-strongly unit regular Monoid from a regular Biordered set and a group, Asian-Eur. J. Math. 4 653–670 (2011).
- [2] Chen S.Y. and S.C. Hsieh, Factorizable inverse semigroups, Semigroup forum Vol 8(1974), 283 -297
- [3] Clifford A.H and Preston G.B., The algebraic theory of semigroups, Surveys of the American Mathematical society 7, Providence, 1961.
- [4] Hickey J.B and M.V. Lawson, Unit regular monoids, University of Glasgow, Department of Mathematics.
- [5] Nambooripad K.S.S., Structure of Regular semigroups 1, Mem. Amer. Math. soc, 224, November 1979.
- [6] Nambooripad K.S.S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc (1980), 249-260.
- [7] T.S. Blyth and Mc Fadden , Unit orthodox semigroups, Glasgow Math.J.24 (1983), 39-42
- [8] V.K. Sreeja and A.R.Rajan, Construction of certain unit regular orthodox submonoids Southeast Asian Bulletin of Mathematics, (2014) 38 (4): 907-916
- [9] V.K. Sreeja and A.R.Rajan, Some properties of regular monoids, Southeast Asian Bulletin of Mathematics, (2015) 39 (6): 891-902
- [10] V.K.Sreeja (2004), " A study of unit regular semigroups"(Ph. d Thesis), University of Kerala, Department of Mathematics, Kerala, India