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Abstract 
 
This paper is a continuation of a previous paper [6] in which the structure of certain unit regular semigroups called R-strongly unit 

regular monoids has been studied. A monoid S is said to be unit regular if for each element s  S there exists an element u in the group of 

units G of S such that s = sus. Hence 
1 suus where su is an idempotent and 

1u is a unit. A unit regular monoid S is said to be a 

unit regular inverse monoid if the set of idempotents of S form a semilattice. Since inverse monoids are R unipotent, every element of a 

unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. Here we give a detailed study 
of inverse unit regular monoids and the results  are mainly based on [10]. The relations between the semilattice of idempotents and the 
group of units in unit regular inverse monoids are better identified in this case.  
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1. Introduction  

 
Throughout this paper let E (= E(S)) denote the semilattice of 
idempotents and G (= G(S)) denote the group of units of S.  

 

Proposition 1.1 ([4]). Let S be a regular monoid. Then S is unit 

regular if and only if for each sS there is an idempotent xE and 

Gg such that s = xg. 

Let L, R be two of Green’s relations and let eL , eR be the L-class 

containing e and R-class containing e respectively. Then we have 
the following proposition.  

 
Proposition 1.2 ([2]).  Let S be an inverse monoid with G = G(S) 
and E = E(S). Then the following conditions are equivalent on S.  

(i) S is unit regular (ii) GeLe  for every .Ee  (iii) 

eGRe  for every Ee . 

 
Definition 1.3 ([4]). Let G be a group and E a non empty set. 

Then G is said to act on E if there is a function from EG  to E 

usually denoted by   eueu *,   such that ee *1 for 

every Ee and for all 

Guu 21, and Ee ,    euueuu *2121   

Definition 1.4. ([5]). Let S be a regular semigroup and the 

sandwich set of )(, SEfe  be denoted by ),( feS . 

Then

 efehfhfhheSEhfeS  and:)(),( . 

It is well known that the set of idempotents E(S) of an inverse 

semigroup S is a semilattice. Further the relations )(SEL and 

)(SER are trivial. 

 

2. Inverse Unit Regular Monoids 

 
In this section we study about the construction of some unit 
regular inverse monoids. Throughout this section let x, y, z, k, w 
denote the elements of E and g, h elements of G.  
 
Theorem 2.1. Let E be a semilattice (that is a commutative band) 

with a maximum element 1 and G be a group acting on E. That is 

for each Gg , the map xgx  is an isomorphism of E. 

For each Ex suppose there exist a collection of subgroups of 

G say G(x) satisfying the following conditions.  
(i) G (1) = {1} 

(ii) )*()( 1 xgGgxgG 
, ExGg  ,  

(iii)   For any k, x in E, )()( kxGxG  = G(xk) 

(iv)  If ),(xGg then xxg * and 

)*( ygxxy  for ., Eyx   

Then on GE  define a relation ~ as follows. For (x, g), (y, h) 

,GE ),(~),( hygx if x = y and ).(1 xGgh 
Let 

~)( GET  and define a product on T as given below. 

For [x, g] , [y, h] ,T  [x, g] [y , h] = [x(g*y), gh] where the 

equivalence class of (x, g) of GE under ~ is denoted by [x, g] 
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.Then T is a unit regular inverse monoid with semilattice of 
idempotents isomorphic to E and group of units isomorphic to G.  

Proof: 
In order to prove the theorem we shall prove the following 
lemmas.  

Lemma 2. 2.  Let F = E  G. Let   : F  F F  ~ be defined as  

( (x, g),  (y, h) )  =  [x (g  y),  g h]. Then   ((x, g), (y, h)) = ((x, 

g), (y, h)) whenever (x, g) ~ (x, g) and (y, h) ~ (y, h).  

Proof : We prove that ( (x ,g), (y, h) ) = ( (x,g) ,(y,h) ) 

whenever (x, g) ~ (x ,g) and (y, h) ~ (y ,h). We will show this in 

two steps. That is we will show that 

(i) ((x, g) ,(y, h)) = ((x, g),(y, h)) if (x, g) ~ (x, g) 

  and  

(ii) ((x, g), (y, h)) = ((x, g), (y, h )) if (y, h) ~ (y, h).  

Consider the first case. Let (x, g) ~ (x, g). Hence gg-1  G (x). 

Let )*,( ygxSk . Let gg-1 = h. Then h  G (x) 

and ghg  . Hence )*)(,( yghxSk  . 

Hence )*,*(* 11 ygxhSkh  
. 

Since )(),( 1 xGhxGh  
. Hence xh *1

 = x, by 

property (iv). That is )*,(*1 ygxSkh 
. Let kh *1

= 

k  .If )(xGh , then )(1 xGh 
and )*( 1 khxxk  , 

by property (iv). That is kxxk  . Choose 

)*( ygxk  and )'*( ygxk  . Then x )*( ygx = 

x )'*( ygx . Hence )*( ygx = )'*( ygx .Also [x(g*y), gh] = 

[x(g*y), gh] only if   ))*(('')( 11
ygxGgghggh  

. 

By property (iii) ))*(()( xygGxG  = G(x (g*y)). Hence 

((x, g), (y, h)) = ((x, g), (y, h)) whenever (x, g) ~ (x, g). Next 

let (y, h) ~ (y, h). Then we will prove that ((x,g ), (y,h )) =  ((x 

,g), (y, h)). Since (y, h) ~ (y, h) we get that hh-1G(y). We have 

to prove [x (g*y), gh] = [x (g*y), gh]. That is we have to show that 

  ) )*(('')( 111
ygxGgghhghgh  

.By property 

(ii) since hh-1G(y) we get  11' gghh  G (gy). By 

property (iii),  11' gghh  G(x (gy). Now coming to the 

general case,  

((x, g),(y, h) ) =  ((x, g), (y, 

h) ) , by step 1 

 =   ((x, g),(y, 

h )) , by step 2 

Since the mapping  is well defined, the product in T namely [x, 

g] [y, h] = [x(gy), gh ] .In the following sections let T denote 

  ~GE
. 

Lemma 2.3. T with the product defined by [x, g] [y, h] = [x(gy), 
gh] is  a monoid. 
Proof: To prove T  is a semigroup it is enough to show that the 
associative property holds.  
Now 
 [x, g] ([y, h] [z, j]) = [x, g] ([y(h*z), 

hj]) 
  = [x (g*(y (h*z)), 
ghj] 
  = [x (g*y) 
(g*(h*z) ), ghj ] 
  =  [x (g*y) 
((gh)*z) , ghj ], since G is a group acting on E.  
Also ([x, g] [y, h] ) [z, j]  =  [x (g*y), gh ] [z, 
j] 

  = [x (g*y) ((gh)*z) 
, ghj]    

Now we prove that [1, 1] is the identity element of T. Now, [x, h] 

[1, 1]  = [x(h*1), h] = [x, h] , since the map xhx   is an 

isomorphism of E. Also [1, 1] [x, h]  =[ (1*x), h]  = [ x, h] by 
property (iv).Therefore [1, 1] [x, h]  = [x, h]. Hence T is a monoid. 
Lemma 2.4. The set of idempotents of T is given by E(T) = { [x,1] 

:x E } . 
Proof:  First we trace out the idempotents of T namely E (T)). We 

will show that E (T) ={[x,1]: xE}. Now   [x, 1] [x, 1] = [x(1 *x), 

1] = [
2x  , 1 ] = [ x, 1 ]. So [x, 1] [x, 1] =    [x, 1]. Also if [x, 

g]E(T), then [x, g] [x, g] = [x, g] implies [x(g*x), g2] = [x, g] . 

Thus x(g*x) = x and  g  G (x). Hence [x, g] = [x, 1] .  

Now to identify G (T) it is necessary to have the following result.  

Lemma 2.5. The group of units of T is given by G(T) = {[1,h] :h 

G }. 
Proof: Now [1, h] [1, h-1] = [h *1, 1]  = [1, 1] .That is, [1, h] [1, h-

1] = [1, 1]. Similarly [1, h-1] [1, h] = [1,1].Therefore the elements 

of the form [1, h]G(T). Also if [x, h]G(T), then there exists [y, 

h]  T such that  [x, h] [y, h] = [1, 1] and [y, h] [x, h] = [1, 1]. 

Hence [x(h *y), hh] =  [1, 1] and [y(h*x), hh] = [1, 1] .So  x(h *y) 

= y(h*x) = 1. Since x(h *y) x  , we get 1 x  .Also x 1 . 

Hence x = 1. So h *y = 1. Similarly y = (h*x) = 1. Hence hh, 

hhG (1) = {1},by Property (i). Therefore hh = hh= 1. So, h = 

h-1. That is    [x, h] = [1, h] and [y, h] = [1, h-1]. Consequently G 

(T) = {[1, h]: hG}, with [1, h]-1 = [1, h-1].  

Lemma 2.6. T is a unit regular monoid. 

Proof: We prove the unit regularity of T by showing that every 

element [x, h] of T is a product [x, 1] [1, h] where   [x, 1] E(T) 

and [1, h] G(T). Now, [x, 1] [1, h] = [x, h] . So T is a unit regular 

monoid.  

Remark: It can be seen that for [x, h] T we can write [x, h] =  [1, 

h] [h-1
x, 1] .  

Lemma 2. 7. E (T) is a semilattice.  
Proof: If  x and y are elements in E , xy is an idempotent since E is 

a semilattice. Also  1,x ]1,[y [x  y*1  ,1] = [ xy, 1 ], since 

G is a group acting on E, 1 * y = y. Also [y, 1] [x, 1] = 

  ]1,*1[ xy = [ yx, 1] . Since E is a semilattice, xy = yx.  Hence 

 1,x ]1,[y [y, 1] [x, 1]. 

Lemma 2. 8. G (T) is isomorphic to G (as groups) and E (T) is 
isomorphic to E as monoids  

Proof: Now let 1:G  G (T) be defined as g1 = [1, g]. Then 

(g1g2)1 =[1, g1g2]. Also (g11) (g21) = [1,g1] [1,g2] = [1 (g1 1), 

g1g2] = [ 1, g1g2]  , since xgx *  is an isomorphism and g1 

1 = 1. Therefore 1 is a homomorphism. 1 is evidently onto. 1 

is one one since g11 = g21 implies that [1, g1] = [1, g2]. Hence 

g1g2
-1G(1) = {1}, by property (i) .So g1 = g2. Therefore 1 is an 

isomorphism of groups.  

Let 2 : EE (T) be defined as x2 = [x, 1]. Then 2 is evidently 

one one and onto. We will prove that 2 is a isomorphism. xy2 = 

[xy, 1].Also x2 y2 = [x, 1] [y, 1] = [x(1 *y) ,1] = [ x y, 1] So 2 is 

an isomorphism of semilattices.  Also 12 = [1, 1]. 

 From the above lemmas we have the Theorem 2.1. 
Corollary 2.9. Let E be a semilattice (that is a commutative band) 
with a maximum element 1 and G be a group acting on E. Suppose 

that for each Ex their corresponds a subgroup )(xG  of G 

satisfying the following: 
(i)  G (1) = {1} 

(ii) For any k, x in E, )()( kxGxG  = G(xk) 

(iii) )*()( 1 xgGgxgG 
, ExGg  ,  

Then on GE  define a relation ~ as follows. For (x, g), (y, h) 

,GE ),(~),( hygx if x = y and ).(1 xGgh 
Let 

~)( GET  and define a product on T as given below. 
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For [x, g] , [y, h] ,T  [x, g] [y , h] = [xy, gh] where the 

equivalence class of (x, g) of GE under ~ is denoted by [x, g] 

.Then T is a unit regular inverse monoid with semilattice of 
idempotents isomorphic to E and E- centralizing group of units 
isomorphic to G. T is in particular a Clifford semigroup.  

 

Acknowledgement 

 
I would like to acknowledge that the results of this paper are 
mainly based on [10].  

 

References 

 
[1] A.R. Rajan and V.K. Sreeja, Construction of a R-strongly unit 

regular Monoid from a regular Biordered set and a group, Asian-

Eur. J. Math. 4 653–670 (2011). 

[2] Chen S.Y. and S.C. Hsieh, Factorizable inverse semigroups, 

Semigroup forum Vol 8(1974), 283 -297 

[3] Clifford A.H and Preston G.B., The algebraic theory of semigroups, 

Surveys of the American Mathematical society 7, Providence, 

1961. 

[4] Hickey J.B and M.V. Lawson, Unit regular monoids, University of 

Glasgow, Department of Mathematics. 

[5] Nambooripad K.S.S. , Structure of Regular semigroups 1, Mem. 

Amer. Math. soc, 224, November 1979. 

[6] Nambooripad K.S.S., The natural partial order on a regular 

semigroup, Proc. Edinburgh Math. Soc (1980), 249-260. 

[7] T.S. Blyth and Mc Fadden , Unit orthodox semigroups, Glasgow 

Math.J.24 (1983), 39-42 

[8] V.K. Sreeja and A.R.Rajan, Construction of certain unit regular 

orthodox submonoids Southeast Asian Bulletin of Mathematics, 

(2014 ) 38 (4): 907-916 

[9] V.K. Sreeja and A.R.Rajan, Some properties of regular monoids, 

Southeast Asian Bulletin of Mathematics, (2015 ) 39 (6): 891-902 

[10] V.K.Sreeja (2004), “ A study of unit regular semigroups”(Ph. d 

Thesis),  University of Kerala, Department of Mathematics, Kerala,  

India 


