Construction of Inverse Unit Regular Monoids from a Semilattice and a Group

Sreeja V.K.*
Department of Mathematics,Amrita Vishwa Vidyapeetham, Amritapuri campus, India
*Corresponding author E-mail: sreeja@.am.amrita.edu

Abstract

This paper is a continuation of a previous paper [6] in which the structure of certain unit regular semigroups called R-strongly unit regular monoids has been studied. A monoid S is said to be unit regular if for each element $s \in S$ there exists an element u in the group of units G of S such that $s=s u s$. Hence $S=S u u^{-1}$ where $s u$ is an idempotent and u^{-1} is a unit. A unit regular monoid S is said to be a unit regular inverse monoid if the set of idempotents of S form a semilattice. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as $s=e u$ where the idempotent part e is unique and u is a unit. Here we give a detailed study of inverse unit regular monoids and the results are mainly based on [10]. The relations between the semilattice of idempotents and the group of units in unit regular inverse monoids are better identified in this case.

Keywords: Inverse monoids, Unit regular monoids, Semi lattice, group.

1. Introduction

Throughout this paper let $E(=E(S))$ denote the semilattice of idempotents and $G(=G(S))$ denote the group of units of S.

Proposition 1.1 ([4]). Let S be a regular monoid. Then S is unit regular if and only if for each $s \in S$ there is an idempotent $x \in E$ and $g \in G$ such that $s=x g$.

Let L, R be two of Green's relations and let L_{e}, R_{e} be the L-class containing e and R-class containing e respectively. Then we have the following proposition.

Proposition 1.2 ([2]). Let S be an inverse monoid with $G=G(S)$ and $E=E(S)$. Then the following conditions are equivalent on S.
(i) S is unit regular
(ii) $L_{e}=G e$ for every $e \in E$.
(iii)

$$
R_{e}=e G \text { for every } e \in E
$$

Definition 1.3 ([4]). Let G be a group and E a non empty set. Then G is said to act on E if there is a function from $G \times E$ to E usually denoted by $(u, e) \rightarrow u^{*} e$ such that $1 * e=e$ for

$$
\begin{align*}
& \text { every } \quad e \in E \text { and } \tag{all}\\
& u_{1}, u_{2} \in G \text { and } e \in E,\left(u_{1} u_{2}\right) * e=u_{1} *\left(u_{2} * e\right)
\end{align*}
$$

Definition 1.4. ([5]). Let S be a regular semigroup and the sandwich set of $e, f \in E(S)$ be denoted by $S(e, f)$. Then
$S(e, f)=\{h \in E(S): h e=f h=h$ and $e h f=e f\}$.

It is well known that the set of idempotents $E(S)$ of an inverse semigroup S is a semilattice. Further the relations $L \mid E(S)$ and $R \mid E(S)$ are trivial.

2. Inverse Unit Regular Monoids

In this section we study about the construction of some unit regular inverse monoids. Throughout this section let $x, y, z, \mathrm{k}, \mathrm{w}$ denote the elements of E and g, h elements of G.

Theorem 2.1. Let E be a semilattice (that is a commutative band) with a maximum element 1 and G be a group acting on E. That is for each $g \in G$, the map $x \rightarrow g * x$ is an isomorphism of E. For each $x \in E$ suppose there exist a collection of subgroups of G say $\mathrm{G}(x)$ satisfying the following conditions.
(i) $G(1)=\{1\}$
(ii) $\quad g G(x) g^{-1}=G\left(g^{*} x\right), g \in G, x \in E$
(iii) For any k, x in $E, G(x) \subseteq G(k x)=\mathrm{G}(x k)$
(iv) If $g \in G(x)$, then $g * x=x$ and $x y=x\left(g^{*} y\right)$ for $x, y \in E$.
Then on $E \times G$ define a relation \sim as follows. For $(x, g),(y, h)$ $\in E \times G,(x, g) \sim(y, h)$ if $x=y$ and $g h^{-1} \in G(x)$. Let $T=(E \times G) \quad / \sim$ and define a product on T as given below. For $[x, g],[y, h] \in T,[x, g][y, h]=\left[x\left(g^{*} y\right), g h\right]$ where the equivalence class of (x, g) of $E \times G$ under \sim is denoted by $[x, g]$
.Then T is a unit regular inverse monoid with semilattice of idempotents isomorphic to E and group of units isomorphic to G.

Proof:

In order to prove the theorem we shall prove the following lemmas.
Lemma 2. 2. Let $F=E \times G$. Let $\psi: F \times F \rightarrow F / \sim$ be defined as $((x, g),(y, h)) \psi=[x(g * y), g h]$. Then $((x, g),(y, h)) \psi=((x$, $\left.\left.g^{\prime}\right),\left(y, \mathrm{~h}^{\prime}\right)\right) \psi$ whenever $(x, g) \sim\left(x, g^{\prime}\right)$ and $(y, \mathrm{~h}) \sim\left(y, \mathrm{~h}^{\prime}\right)$.
Proof: We prove that $((x, g),(y, h)) \psi=\left(\left(x, g^{\prime}\right),\left(y, h^{\prime}\right)\right) \psi$ whenever $(x, g) \sim\left(x, g^{\prime}\right)$ and $(y, h) \sim\left(y, h^{\prime}\right)$. We will show this in two steps. That is we will show that
(i)

$$
\begin{array}{ll}
\text { (i) } & ((x, g),(y, h)) \psi=\left(\left(x, g^{\prime}\right),(y, h)\right) \psi \text { if }(x, g) \sim\left(x, g^{\prime}\right) \\
\text { and } \\
\text { (ii) } & ((x, g),(y, h)) \psi=\left((x, g),\left(y, h^{\prime}\right)\right) \psi \text { if }(y, h) \sim\left(y, h^{\prime}\right) .
\end{array}
$$

Consider the first case. Let $(x, g) \sim\left(x, g^{\prime}\right)$. Hence $g g^{\prime-1} \in G(x)$. Let $k \in S\left(x, g^{*} y\right)$. Let $g g^{\prime-1}=h$. Then $h \in G(x)$ and $g=h g^{\prime}$. Hence $k \in S\left(x,\left(h g^{\prime}\right) * y\right)$.
Hence $h^{-1} * k \in S\left(h^{-1} * x, g^{\prime} * y\right)$.
Since $h \in G(x), h^{-1} \in G(x)$. Hence $h^{-1} * x=x$, by property (iv). That is $h^{-1} * k \in S\left(x, g^{\prime} * y\right)$. Let $h^{-1} * k=$ k^{\prime}.If $h \in G(x)$, then $h^{-1} \in G(x)$ and $x k=x\left(h^{-1} * k\right)$, by property (iv). That is $x k=x k^{\prime}$. Choose $k=x\left(g^{*} y\right)$ and $k^{\prime}=x\left(g^{\prime *} y\right) . \quad$ Then $\quad x x\left(g^{*} y\right)=$ $x x\left(g^{\prime *} y\right)$. Hence $x\left(g^{*} y\right)=x\left(g^{\prime *} y\right)$.Also $\left[x\left(g^{*} y\right), g h\right]=$ $\left[x\left(g^{*} * y\right), g^{\prime} h\right]$ only if $(g h)\left(g^{\prime} h\right)^{-1}=g g^{\prime-1} \in G\left(x\left(g^{*} y\right)\right)$. By property (iii) $G(x) \subseteq G\left(\left(g^{*} y\right) x\right)=\mathrm{G}\left(x\left(g^{*} y\right)\right)$. Hence $((x, g),(y, h)) \psi=\left(\left(x, g^{\prime}\right),(y, h)\right) \psi$ whenever $(x, g) \sim\left(x, g^{\prime}\right)$. Next let $(y, h) \sim\left(y, h^{\prime}\right)$. Then we will prove that $((x, g),(y, h)) \psi=((x$,g), $\left.\left(y, h^{\prime}\right)\right) \psi$. Since $(y, h) \sim\left(y, h^{\prime}\right)$ we get that $h h^{\prime-1} \in G(y)$. We have to prove $\left[x\left(g^{*} y\right), g h\right]=\left[x\left(g^{*} y\right), g h^{\prime}\right]$. That is we have to show that $(g h)\left(g h^{\prime}\right)^{-1}=g h h^{\prime-1} g^{-1} \in G\left(x\left(g^{*} y\right)\right)$.By property (ii) since $h h^{\prime-1} \in G(y)$ we get $g h h^{\prime-1} g^{-1} \in G(g * y)$. By property (iii), $g h h^{\prime-1} g^{-1} \in G(x(g y)$. Now coming to the general case,
$\begin{array}{lll}((x, g),(y, h)) \psi & = & \left(\left(x, g^{\prime}\right),(y,\right. \\ h)) \psi, \text { by step } 1 & = & \left(\left(x, g^{\prime}\right),(y,\right.\end{array}$

$\left.\left.h^{\prime}\right)\right) \psi$, by step 2

Since the mapping ψ is well defined, the product in T namely $[x$, $g][y, h]=[x(g * y), g h]$. In the following sections let T denote
$(E \times G) / \sim$
Lemma 2.3. T with the product defined by $[x, g][y, h]=[x(g * y)$, gh] is a monoid.
Proof: To prove T is a semigroup it is enough to show that the associative property holds.
Now

$$
[x, g]([y, h][z, j]) \quad=\quad[x, g]\left(\left[y\left(h^{*} z\right)\right.\right.
$$

$h j]$)
ghj]
$\left.\left(g^{*}\left(h^{*} z\right)\right), g h j\right]$
$=\quad[x, g]\left(\left[y\left(h^{*} z\right)\right.\right.$,
$=\quad\left[x\left(g^{*}\left(y\left(h^{*} z\right)\right)\right.\right.$
$\left.\left((g h)^{*} z\right), g h j\right]$, since G is a group acting on E
Also $([x, g][y, h])[z, j]$
j]
, $g h j]$

Now we prove that $[1,1]$ is the identity element of T. Now, $[x, h]$ $[1,1]=[x(h * 1), h]=[x, h]$, since the map $x \rightarrow h * x$ is an isomorphism of E. Also [1, 1] $[x, h]=\left[\left(1^{*} x\right), h\right]=[x, h]$ by property (iv).Therefore $[1,1][x, h]=[x, h]$. Hence T is a monoid.
Lemma 2.4. The set of idempotents of Tis given by $E(T)=\{[x, 1]$ $: x \in E\}$.
Proof: First we trace out the idempotents of T namely $E(T)$). We will show that $E(T)=\{[x, 1]: x \in E\}$. Now $[x, 1][x, 1]=[x(1 * x)$, $1]=\left[x^{2}, 1\right]=[x, 1]$. So $[x, 1][x, 1]=[x, 1]$. Also if $[x$, $g] \in E(T)$, then $[x, g][x, g]=[x, g]$ implies $\left[x\left(g^{*} x\right), g^{2}\right]=[x, g]$. Thus $x\left(g^{*} x\right)=x$ and $g \in G(x)$. Hence $[x, g]=[x, 1]$. Now to identify $G(T)$ it is necessary to have the following result.
Lemma 2.5. The group of units of T is given by $G(T)=\{[1, h]: h \in$ G \}.
Proof: Now $[1, h]\left[1, h^{-1}\right]=[h * 1,1]=[1,1]$.That is, $[1, h][1, h$ $\left.{ }^{1}\right]=[1,1]$. Similarly $\left[1, h^{-1}\right][1, h]=[1,1]$.Therefore the elements of the form $[1, h] \in G(T)$. Also if $[x, h] \in G(T)$, then there exists $[y$, $\left.h^{\prime}\right] \in T$ such that $[x, h]\left[y, h^{\prime}\right]=[1,1]$ and $\left[y, h^{\prime}\right][x, h]=[1,1]$. Hence $\left[x\left(h^{*} y\right), h h^{\prime}\right]=[1,1]$ and $\left[y\left(h^{\prime *} x\right), h^{\prime} h\right]=[1,1]$.So $x\left(h^{*} y\right)$ $=y\left(h^{*} x\right)=1$. Since $x(h * y) \leq x$, we get $1 \leq x$.Also $x \leq 1$. Hence $x=1$. So $h^{*} y=1$. Similarly $y=\left(h^{*} x\right)=1$. Hence $h h^{\prime}$, $h^{\prime} h \in G(1)=\{1\}$, by Property (i). Therefore $h h^{\prime}=h^{\prime} h=1$. So, $h^{\prime}=$ h^{-1}. That is $[x, h]=[1, h]$ and $\left[y, h^{\prime}\right]=\left[1, h^{-1}\right]$. Consequently G $(T)=\{[1, h]: h \in G\}$, with $[1, h]^{-1}=\left[1, h^{-1}\right]$.
Lemma 2.6. Tis a unit regular monoid.
Proof: We prove the unit regularity of T by showing that every element $[x, h]$ of T is a product $[x, 1][1, h]$ where $[x, 1] \in E(T)$ and $[1, h] \in G(T)$. Now, $[x, 1][1, h]=[x, h]$. So T is a unit regular monoid.
Remark: It can be seen that for $[x, h] \in T$ we can write $[x, h]=[1$, $h]\left[h^{-1} x, 1\right]$.
Lemma 2. 7. $E(T)$ is a semilattice.
Proof: If x and y are elements in $E, x y$ is an idempotent since E is a semilattice. Also $[x, 1][y, 1]=[x(1 * y), 1]=[x y, 1]$, since G is a group acting on $E, 1 * y=y$. Also $[y, 1][x, 1]=$ $[y(1 * x), 1]=[y x, 1]$. Since E is a semilattice, $x y=y x$. Hence $[x, 1][y, 1]=[y, 1][x, 1]$.
Lemma 2. 8. $G(T)$ is isomorphic to G (as groups) and $E(T)$ is isomorphic to E as monoids
Proof: Now let $\varphi_{1}: G \rightarrow G(T)$ be defined as $g \varphi_{1}=[1, g]$. Then $\left(g_{1} g_{2}\right) \varphi_{1}=\left[1, g_{1} g_{2}\right]$. Also $\left(g_{1} \varphi_{1}\right)\left(g_{2} \varphi_{1}\right)=\left[1, g_{1}\right]\left[1, g_{2}\right]=\left[1\left(g_{1}\right)\right.$, $\left.g_{1} g_{2}\right]=\left[1, g_{1} g_{2}\right]$, since $X \rightarrow g^{*} X$ is an isomorphism and g_{1} * $1=1$. Therefore φ_{1} is a homomorphism. φ_{1} is evidently onto. φ_{1} is one one since $g_{1} \varphi_{1}=g_{2} \varphi_{1}$ implies that $\left[1, g_{1}\right]=\left[1, g_{2}\right]$. Hence $g_{1} g_{2}{ }^{-1} \in \mathrm{G}(1)=\{1\}$, by property (i). So $g_{1}=g_{2}$. Therefore φ_{1} is an isomorphism of groups.
Let $\varphi_{2}: E \rightarrow E(T)$ be defined as $x \varphi_{2}=[x, 1]$. Then φ_{2} is evidently one one and onto. We will prove that φ_{2} is a isomorphism. $x y \varphi_{2}=$ $[x y, 1]$.Also $x \varphi_{2} y \varphi_{2}=[x, 1][y, 1]=[x(1 * y), 1]=[x y, 1]$ So φ_{2} is an isomorphism of semilattices. Also $1 \varphi_{2}=[1,1]$.
From the above lemmas we have the Theorem 2.1.
Corollary 2.9. Let E be a semilattice (that is a commutative band) with a maximum element 1 and G be a group acting on E. Suppose that for each $x \in E$ their corresponds a subgroup $G(x)$ of G satisfying the following:
(i) $\mathrm{G}(1)=\{1\}$
(ii) For any k, x in $E, G(x) \subseteq G(k x)=\mathrm{G}(x k)$
(iii) $g G(x) g^{-1}=G\left(g^{*} x\right), g \in G, x \in E$

Then on $E \times G$ define a relation \sim as follows. For $(x, g),(y, h)$ $\in E \times G,(x, g) \sim(y, h)$ if $x=y$ and $g h^{-1} \in G(x)$. Let $T=(E \times G) \quad / \sim$ and define a product on T as given below.

For $[x, g],[y, h] \in T,[x, g][y, h]=[x y, g h]$ where the equivalence class of (x, g) of $E \times G$ under \sim is denoted by $[x, g]$ Then T is a unit regular inverse monoid with semilattice of idempotents isomorphic to E and E - centralizing group of units isomorphic to G. T is in particular a Clifford semigroup.

Acknowledgement

I would like to acknowledge that the results of this paper are mainly based on [10].

References

[1] A.R. Rajan and V.K. Sreeja, Construction of a R-strongly unit regular Monoid from a regular Biordered set and a group, AsianEur. J. Math. 4 653-670 (2011).
[2] Chen S.Y. and S.C. Hsieh, Factorizable inverse semigroups, Semigroup forum Vol 8(1974), 283-297
[3] Clifford A.H and Preston G.B., The algebraic theory of semigroups, Surveys of the American Mathematical society 7, Providence, 1961.
[4] Hickey J.B and M.V. Lawson, Unit regular monoids, University of Glasgow, Department of Mathematics.
[5] Nambooripad K.S.S. , Structure of Regular semigroups 1, Mem. Amer. Math. soc, 224, November 1979.
[6] Nambooripad K.S.S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc (1980), 249-260.
[7] T.S. Blyth and Mc Fadden , Unit orthodox semigroups, Glasgow Math.J. 24 (1983), 39-42
[8] V.K. Sreeja and A.R.Rajan, Construction of certain unit regular orthodox submonoids Southeast Asian Bulletin of Mathematics, (2014) 38 (4): 907-916
[9] V.K. Sreeja and A.R.Rajan, Some properties of regular monoids, Southeast Asian Bulletin of Mathematics, (2015) 39 (6): 891-902
[10] V.K.Sreeja (2004), " A study of unit regular semigroups"(Ph. d Thesis), University of Kerala, Department of Mathematics, Kerala, India

