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Abstract. Shannon entropy has been extensively used for characteriz-
ing complexity of time series arising from chaotic dynamical systems
and stochastic processes such as Markov chains. However, for short
and noisy time series, Shannon entropy performs poorly. Complex-
ity measures which are based on lossless compression algorithms are
a good substitute in such scenarios. We evaluate the performance of
two such Compression-Complexity Measures namely Lempel-Ziv com-
plexity (LZ) and Effort-To-Compress (ETC) on short time series from
chaotic dynamical systems in the presence of noise. Both LZ and ETC
outperform Shannon entropy (H) in accurately characterizing the dy-
namical complexity of such systems. For very short binary sequences
(which arise in neuroscience applications), ETC has higher number of
distinct complexity values than LZ and H, thus enabling a finer reso-
lution. For two-state ergodic Markov chains, we empirically show that
ETC converges to a steady state value faster than LZ. Compression-
Complexity measures are promising for applications which involve short
and noisy time series.

1 Introduction

Claude Shannon introduced the idea of ‘entropy’ as a quantitative measure of in-
formation in 1948 [1] when he was building a mathematical theory of communica-
tion. The notion of entropy had already been proposed in thermodynamics (Clausius,
1965) and in statistical physics (Boltzmann and Gibbs, 1900s). Shannon entropy of a
discrete random variable is defined as:

H(χ) = −
M∑

i=1

pi log2(pi) bits/symbol, (1)
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where χ is the random variable with M possible events and the probability of oc-
currence of the i-th event is given by pi > 0. The maximum value of the concave
function H(prob.) is achieved for a uniform random variable with all events equally
likely (H = log2(M) bits).
Apart from playing a fundamental role in communications, information and cod-

ing theory, Shannon entropy is also used to characterize the complexity of a time
series. Low entropy of a time series indicates low complexity (less randomness and
hence more structure) whereas a higher value of entropy of a time series would imply
a higher complexity (more randomness and hence less structure). This is because,
Shannon entropy characterizes the degree of compressibility of an input sequence.
Today, Shannon entropy (or H), and some of its related information theoretic mea-
sures (such as mutual information, conditional entropy etc.), continue to be widely
used as measures of dynamical complexity in several applications. It is used in bio-
medical applications [2], for e.g., as a pattern classification tool in heart rate vari-
ability analysis [3]; to measure structural and dynamical complexity of networks [4]
and communication complexity [5]; for biological sequence analysis in bioinformat-
ics [6,7]; in econometric/financial time series analysis [8–10]; and not to miss out on
the various entropic forms in physics [11]. This is by no means an exhaustive list,
but only serves as indicative of the diverse domains in which Shannon entropy is
applied.
However, Shannon entropy (H) has serious drawbacks when the time series under

consideration is short and noisy. In this work, we point out these limitations and
propose the use of Compression-Complexity measures to overcome these limitations
of Shannon entropy for characterizing dynamical complexity of short and noisy time
series. Compression-Complexity measures shall be defined as complexity measures
based on lossless compression algorithms. This is the subject matter discussed in
Sections 2 and 3 of this paper.
Signals that are seen in real world are never completely random in nature, though

they may be stochastic in origin. In several instances, these signals behave as informa-
tion sources that may be modelled as Markov or hidden Markov processes. Markov
chains, named after Andrei Andreievich Markov (1856–1922), is a type of random
process which has the property that the current state of the system depends only
on its immediate past state1 and not on the sequence of past states prior to that.
The transition from one state to another state is captured by transition probabilities.
Markov chains have played a vital role for modeling in statistical mechanics. Dat-
ing back to the urn models for mixing of D. Bernoulli (1769), Laplace (1812) and
Ehrenfest (1907), these are simple examples of Markov chain models (known as ran-
dom walks).
Many real world systems behave like Markov sources that produce signals that

may be recreated using finite chain Markov process models. E.g., the patterned
structure of heart-beat intervals [12–15], base compositions of DNA sequences [16–
19], decomposition and recognition of speech [20–22], language scripts modelling
[23–25], information sources in communication systems [26–28], trend prediction
of stock indices [29] and analysis of share prices [30], can all be mathematically
viewed as Markov processes/chains. Hence, a study of the performance of complex-
ity measures on data produced from Markov chains would be a good indication of
its performance on real world signals. In section 4, we simulate a 2-state Markov
chain and evaluate the performance of Compression-Complexity in characterizing its
complexity.
We conclude with future research directions in the last section.

1 This is the definition of a 1-order Markov process.
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2 Limitations of Shannon entropy as a measure of dynamical
complexity

In order to explicitly demonstrate the limitations of Shannon entropy as a measure
of dynamical complexity, we consider the chaotic dynamical system which is known
as the Logistic map [31]. The governing equation of this dynamical system is:

xn+1 = axn(1− xn), (2)

where xn is the value at discrete time step n > 0, x1 is chosen randomly from (0, 1)
and a is the bifurcation parameter (0 ≤ a ≤ 4). The Logistic map is known to ex-
hibit chaos for certain values of the bifurcation parameter ‘a’ [31]. By varying the
bifurcation parameter a, one can obtain time series {xn} which exhibits periodic be-
haviour (for e.g., a = 3.83), weak chaos (a = 3.75), strong chaos (a = 3.9) or even
complete chaos (a = 4.0 where there are no attracting periodic orbits). It is intuitive
that periodic time series is of low complexity whereas weak chaos has higher com-
plexity and strong chaos is of even higher complexity. An even higher complexity
would be manifested by complete chaos, though we would expect a uniform random
sequence from a stochastic source to be of the highest complexity. Thus, the time
series obtained by the Logistic map serves as a test data-set which can be used to
determine whether Shannon entropy can quantitatively characterize the complexity
correctly and also the order of complexities (from weak chaos to strong chaos to
complete chaos). We shall compare this with Lyapunov exponent λ, which measures
the degree of sensitive dependence to initial conditions. The Lyapunov exponent λ
is zero for a periodic time series and positive for chaotic time series (and increases
in value with increasing strength of chaos in the system, and is very high for strong
chaos). λ serves as an excellent quantitative measure of complexity for dynamical
systems whose equations are known, because, in such instances it can be computed
using an analytical expression. For the Logistic map, λ is given by the following
expression:

λ(a) = lim
L→∞

1

L

L∑

i=1

ln(|a(1− 2xi)|), (3)

where L stands for length of time series and {xi} is the time series generated by
equation (2) starting from a randomly chosen initial value x1 in (0, 1). For simulation
purposes, we take L as the actual length of the time series in equation (3) (and drop
the ‘limit’).
In order to test the performance of Shannon entropy H to characterize dynamical

complexity of the logistic map, we vary the bifurcation parameter a from 3.5 to 4.0 and
generate time series of length L = 200 from randomly chosen initial value x1 in (0, 1).
The Lyapunov exponent λ(a) for each time series is computed using equation (3).
Also, we compute the Shannon entropy H of the symbolic sequence of each time
series using equation (1). A symbolic sequence is a sequence of symbols for each
corresponding value of the time series. We have chosen four equal sized bins spanning
the entire range of the time series [Min,Max] and associate a unique symbol to each
bin. Thus, the four bins would be [Min, V1], [V1,Mean], [Mean, V2] and [V2,Max]
with the corresponding symbols being A, B, C and D where V1 =

Min+Mean
2 and

V2 =
Mean+Max

2 . Figure 1 depicts the graph of entropyH and the Lyapunov exponent
λ(a). It can be seen that H is poorly correlated with λ(a). This is also indicated
quantitatively by a low value of Pearson’s correlation coefficient = 0.2721 between H
and λ(a).
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Fig. 1. Shannon Entropy H (solid) and Lyapunov exponent λ(a) (dotted) for the logistic
map as the bifurcation parameter a is varied from 3.55 to 4.0 (in steps of 0.01). It can be
seen that H is poorly correlated with λ(a). This is also indicated quantitatively by a low
value of Pearson’s correlation coefficient = 0.2721 between H and λ(a). Here, we have chosen
L = 200 and number of bins = 4 for the symbolic sequence.
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Fig. 2. The correlation of Shannon entropy (H), Lempel-Ziv complexity (LZ) and Effort-
To-Compress complexity (ETC) with Lyapunov exponent (λ) for the logistic map (a = 3.55
to 4.0) for different lengths of time series. Entropy is very poorly correlated with Lyapunov
exponent, whereas both LZ and ETC show very good correlation. We have used 4 symbols
in all cases.

Thus, the empirically determined Shannon entropy H is a poor indicator of
dynamical complexity, especially for short time series (L = 200 and lesser). The
performance of H as the length of time series is varied is depicted in Figure 2.

3 Compression-Complexity measures

As noted in the previous section, there are serious limitations to Shannon entropy as a
measure of dynamical complexity for short time series arising from chaotic dynamical
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systems. This motivates us to find alternate measures to characterize the dynamical
complexity in such scenarios. A class of measures which come to our rescue is what
we call as Compression-Complexity measures, or CCM for short.
Compression-Complexity Measures (CCM ) are those measures of complexity

which are derived from lossless data compression algorithms. It is well acknowledged
that data compression algorithms are not only useful for compression of data for ef-
ficient transmission and storage, but also act as models for learning and statistical
inference [32]. One example of such a measure is the popular Lempel-Ziv Complexity
(LZ ) [33] which is closely related to the universal dictionary-based lossless compres-
sion algorithm by the same authors [34]. LZ complexity measure has been widely
used in a number of fields such as – in biomedical applications [35,36], for estimat-
ing entropy of spike trains [37], data analysis for random boolean networks [38], in
studying transition between stationary and non-stationary chaos in a one-dimensional
non-hyperbolic chaos map [39], in designing a new distance measure for phylogenetic
tree construction [40], for measuring complexity of genetic sequences [41], as well as
in a number of financial time series analysis applications [42,43].
Another example of a CCM is the Effort-To-Compress (ETC ) complexity measure

which was introduced in [44]. Unlike LZ complexity, ETC measures not the degree
of compressibility, but rather the effort to compress the input sequence by means of
a lossless compression algorithm. In particular, ETC is implemented using a lossless
compression algorithm known as Non-Sequential Recursive Pair Substitution algo-
rithm (NSRPS ) [45]. ETC has been particularly useful for characterizing complexity
of short and noisy time series [44] and has recently been applied for characterizing
complexity of cardiovascular dynamics [46].
In what follows, we shall briefly describe LZ and ETC complexity measures

and how they are applied on an input sequence. Subsequently, we shall evaluate
their performance on time series obtained from various chaotic dynamical systems
and compare and contrast with performance of Shannon entropy for characterizing
dynamical complexity.

3.1 Lempel-Ziv complexity (LZ)

In order to compute the Lempel-Ziv complexity (or LZ ) of an input time series {xi},
it has to be first converted to a symbolic sequence {si}. Mathematically, this can be
expressed as follows:

si = 0, if Min ≤ xi ≤ Mean, (4)

= 1, if Mean < xi ≤ Max, (5)

where 1 ≤ i ≤ n (integer) for a time series {xi} of length n. Min, Mean and Max
are the minimum, mean and maximum of the entire time series respectively. Here, the
symbolic sequence {si} is of the same length as the input time series {xi}, but with
only two symbols 0 and 1. Sometimes, we use the term ‘bins’ to represent number of
symbols in the symbolic sequence. In the above example, the symbolic sequence has
two ‘bins’. This can be extend to M bins by uniformly binning the entire range of
the time series [Min,Max] into M equal sized bins and using corresponding symbols
{0, 1, . . . ,M − 1} (note: the symbols could well be {a, b, c, ...,m}).
The resulting symbolic sequence S = {si}i=ni=1 = s1s2 . . . sn is then parsed from left

to right in order to identify the number of distinct patterns present. This method of
parsing was proposed by Lempel and Ziv [33] and this is closely related to the univer-
sal compression algorithm [34]. We reproduce below a very succinct description of the
algorithm for computing LZ complexity, taken from Hu et al. [36]. Let S = s1s2 · · · sn
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Fig. 3. Lempel-Ziv complexity LZ (solid) and Lyapunov exponent λ(a) (dotted) for the
logistic map as the bifurcation parameter a is varied from 3.55 to 4.0 (in steps of 0.01). The
graphs are well correlated (positively). This is indicated by a value of Pearson’s correlation
coefficient = 0.8889 between LZ and λ(a). Here, we have chosen L = 200 and number of
bins = 4 for the symbolic sequence.

denote a symbolic sequence; S(i, j) denote a substring of S that starts at position i and
ends at position j; V (S) denote the set of all substrings {S(i, j), i = 1, 2, · · ·n; j ≥ i}.
For example, let S = pqr, then V (S) = p, q, r, pq, qr, pqr. The parsing mechanism
involves a left-to-right scan of the symbolic sequence S. Start with i = 1 and j = 1. A
substring S(i, j) is compared with all strings in V (S(i, j − 1)) (Let V (S(1, 0)) = {},
the empty set). If S(i, j) is present in V (S(1, j − 1)), then increase j by 1 and repeat
the process. If the substring is not present, then place a dot after S(i, j) to indicate
the end of a new component, set i = j + 1, increase j by 1, and the process continues.
This parsing procedure continues until j = n, where n is the length of the symbolic
sequence. For example, the sequence ‘pprqprqp’ is parsed as ‘p.pr.q.prqp.’. By conven-
tion, a dot is placed after the last element of the symbolic sequence and the number
of dots gives us the number of distinct words which is taken as the LZ complexity,
denoted by c(n). In this example, the number of distinct words (LZ complexity) is 4.
In order to be able to compare the LZ complexity of sequences of different lengths, a
normalized measure is proposed [35]:

CLZ = (c(n)/n)logαn, (6)

where α denotes the number of unique symbols in the input sequence.
Figure 3 depicts the graph of Lempel-Ziv complexity LZ and the Lyapunov

exponent λ(a). The graphs are well correlated (positively). This is indicated by a
high value of Pearson’s correlation coefficient = 0.8889 between LZ and λ(a).
As the length of time series is varied, the correlation coefficient is consistently high
as shown in Figure 2.

3.2 Effort-To-Compress complexity (ETC)

Recently, we have proposed a new complexity measure known as Effort-To-Compress
(ETC ) which is based on the effort required by a lossless compression algorithm to
compress a given sequence (Nagaraj et al. 2013 [44]). We have used a lossless compres-
sion algorithm known as Non-sequential Recursive Pair Substitution (NSRPS ) [45].
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Fig. 4. Effort-To-Compress complexity ETC (solid) and Lyapunov exponent λ(a) (dotted)
for the logistic map as the bifurcation parameter a is varied from 3.55 to 4.0 (in steps of
0.01). The graphs are well correlated (positively). This is indicated by a value of Pearson’s
correlation coefficient = 0.8771 between ETC and λ(a). Here, we have chosen L = 200 and
number of bins = 4 for the symbolic sequence.

The input time series is first converted into a symbolic sequence which was described
in the previous subsection. The algorithm for compressing the resulting symbolic se-
quence proceeds as follows. At the first iteration, that pair of symbols which has the
maximum number of occurrences is replaced by a new symbol. For example, the input
sequence 11010010 is transformed into 12202 in the first iteration since the pair 10
has maximum number of occurrences compared to all other pairs (00, 01 and 11). In
the second iteration, 12202 is transformed to 3202 (in fact all pairs are equally likely
and we have chosen to replace ‘12’). The algorithm proceeds in this manner until the
length of the transformed string shrinks to 1 or the transformed string becomes a
constant sequence (at which stage the entropy of the transformed string is zero and
the algorithm halts). In this example, the algorithm transforms the input sequence
11010010 �→ 12202 �→ 3202 �→ 402 �→ 52 �→ 6.
The ETC complexity measure is defined as N , the number of iterations required

for the input sequence to be transformed to a constant sequence through the usage of
NSRPS algorithm. N is always a non-negative integer that is bounded between 0 and
L− 1, where L stands for the length of the input symbolic sequence. The normalized
version of the measure is given by: N

(L−1) . Note that 0 ≤ N
(L−1) ≤ 1. Please refer to [44]

for further details.
Figure 4 depicts the graph of Effort-To-Compress complexity ETC and the

Lyapunov exponent λ(a). The graphs are well correlated (positively). This is indi-
cated by a high value of Pearson’s correlation coefficient = 0.8771 between ETC and
λ(a). As the length of time series is varied, the correlation coefficient is consistently
high as shown in Figure 2 and both LZ and ETC outperform Shannon entropy H.

3.3 CCM vs. Shannon entropy on chaotic dynamical systems

Inspired by the superior performance of Compression-Complexity Measures (or CCM )
such as LZ and ETC over Shannon entropy (H) in characterizing the dynamical
complexity of the chaotic Logistic map (as seen in the previous section), we shall
now evaluate their performance on short and noisy time series from other chaotic
dynamical systems – both maps and flows, with and without noise. We consider
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Table 1. Chaotic dynamical systems and their parameter settings chosen for the study.

System Equation Param. settings Remarks
Logistic map xn+1 = axn(1− xn) a = 3.83, 3.9, 4.0 1D Map

Hénon map xn+1 = 1− ax2n + yn, a = 1.2, 1.3, 1.4, 2D Map
yn+1 = bxn b = 0.3

Lorenz system
dx

dt
= σy − σx σ = 10, β =

8

3
, 3D Flow

dy

dt
= ρx− xz − y ρ = 20, 25, 28

dz

dt
= xy + βz

time series from various chaotic dynamical systems for our test [31]. In Table 1, we
indicate the name of the chaotic system as well as the parameter settings we have
chosen for our study. The goal is to evaluate whether the measures (H,LZ and ETC)
can automatically classify the time series from each system generated under different
parameter settings and which is known to generate different complexities.
The reason for the specific values for the choice of parameter settings is that it

yields the following hierarchy of complexities (where the symbol A ≺ B means that
time series corresponding to A has lower complexity than that of B):

– Logistic map: (a = 3.83) ≺ (a = 3.9) ≺ (a = 4.0) ≺ uniform random sequence.
– Hénon map: (a = 1.3) ≺ (a = 1.2) ≺ (a = 1.4) ≺ uniform random sequence.
– Lorenz system: (ρ = 20) ≺ (ρ = 25) ≺ (ρ = 28) ≺ uniform random sequence.
Note, this hierarchy is determined independently by the Lyapunov exponent in each
case and serves as the gold truth for our study. Our goal is to determine whether
Shannon entropy and CCMs can correctly determine this hierarchy from the given
time series. Uniform random sequence has the largest Lyapunov exponent and hence
it has the highest complexity.
Talbinejad et al. [47] have done a basic complexity analysis of data from the logistic

map using the LZ complexity measure and have shown that LZ is able to distinguish
between data complexities for sequences of different lengths, but the analysis is done
for data generated using a single initial value. This is not enough to claim that the
measures are able to distinguish data of different complexities, since different initial
conditions will give rise to completely different sequences. We analyze the problem
with multiple values of initial conditions and perform statistical hypothesis testing
for differences in means to determine the minimum sequence length at which correct
identification is achieved. This is performed for all the three measures, namely ETC,
LZ and H, and a comparative analysis is performed. This analysis is done for data
generated using the one 1D map: logistic map, one 2D map: Hénon map, and one
3D flow: Lorenz system. We also include a uniform random sequence and check if the
measures are able to distinguish it from chaotic data of different complexities.
All the time series that is produced by the above mentioned chaotic systems con-

sist of real numbers. We convert the input time series into a symbolic sequence (as
described in the beginning of Sect. 3.1). We have used four bins (which means the
symbolic sequence will consist of only four symbols) in our study. Having generated
different sequences of varying lengths, complexity measures are applied and the results
observed to see if there are statistically significant differences in the calculated com-
plexity values and whether the correct hierarchical ordering of the sequences based
on these complexity values are obtained in each case. This is achieved by analysis
using one-way ANOVA (Analysis of Variance) with post-hoc Tukey HSD (Honest
Significant Difference) test for multiple comparisons. We then determine the min-
imum length of data needed to achieve the correct hierarchical ordering for each
map and for each measure. The results are shown in Table 2, from which it is clear



Aspects of Statistical Mechanics and Dynamical Complexity 2199

Table 2. Minimum length of data required for correct hierarchical ordering of sequences
(from low to high complexities) for chaotic dynamical systems described in Table 1. Both
ETC and LZ outperform Shannon entropy (H). ETC is the best among the three measures.

Chaotic Min. Len. Min Len. Min. Len.
System H LZ ETC

Logistic map 125 20 15

Hénon map 1350 30 30

Lorenz system > 104 40 40

Table 3. Minimum length of data required for correct hierarchical ordering of sequences
(from low to high complexities) (in the presence of additive Gaussian noise with specified
SNR (dB)) for chaotic dynamical systems described in Table 1. SNR∗ denotes the SNR
below which performance of the measure degrades and above which the measure is robust
to noise and SNRAnal gives the SNR used for noise analysis. ETC is the best among the
three measures.

Chaotic SNR∗ SNRAnal Min. Len. Min. Len. Min. Len.
System (dB) (dB) H LZ ETC

Logistic map 70 58 180 30 20

Hénon map 70 58 > 5× 104 40 40

Lorenz system 140 125 > 104 90 60

that the best (least) value of minimum length is achieved by ETC, followed by LZ.
Shannon entropy’s performance is the worst in each instance. Thus, CCMs outperform
Shannon entropy for characterizing the dynamical complexity of short time series from
chaotic maps and flows.

3.3.1 Effect of additive gaussain noise

We investigated the effect of additive noise on the performance of the compleixty mea-
sures in characterizing the dynamical complexity of the chaotic dynamical systems.
To this end, zero mean Gaussian noise with a standard deviation of 1 was added on
to the time series from the chaotic dynamical systems. The symbolic sequence was
extracted from the time series as before (4 bins) and similar analysis was performed
to determine the minimum length of the sequence for determining the correct hierar-
chical ordering (from low to high complexities) in each case. To ensure that the noise
doesn’t override the signal itself, only a fraction of the noise output is added. In each
of the cases, by trial and error, we found the signal to noise ratio (SNR) at which
the performance of the measures was very close to the noise-free condition. Then
for noise analysis, we considered noise with SNR that was around 15–20% less than
the SNR at which the performance matches with the noise-free condition. Table 3
shows the performance analysis of the different measures under noisy conditions. It
is evident that all measures undergo performance degradation due to the presence of
noise. Shannon entropy undergoes more degradation than LZ and ETC. ETC is still
the best among the three measures, even in the presence of a significant amount of
additive gaussian noise. We can conclude that CCMs are effective in characterizing
dynamical complexity for short and noisy time series from chaotic dynamical systems.
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Table 4. CCM vs. H on very short binary sequences. For all binary sequences (lengths 4 to
16), the number of distinct values for each measure as well as the mean is indicated. ETC
has the highest number of distinct values which allows a better discrimination between short
binary sequences.

Length
H LZ ETC

# distinct val. Mean # distinct val. Mean # distinct val. Mean
4 3 0.7806 2 1.3750 3 0.7917
5 3 0.8324 3 1.4512 3 0.8125
6 4 0.8648 3 1.4540 5 0.7500
7 4 0.8867 4 1.4538 4 0.7682
8 5 0.9024 4 1.4590 6 0.7321
9 5 0.9143 4 1.4529 6 0.7109
10 6 0.9235 5 1.4456 8 0.6860
11 6 0.9309 5 1.4373 5 0.6722
12 7 0.9370 5 1.4304 10 0.6532
13 7 0.9421 6 1.4221 7 0.6407
14 8 0.9464 6 1.4137 9 0.6262
15 8 0.9501 6 1.4055 10 0.6140
16 9 0.9534 7 1.3980 11 0.6023

3.4 CCM vs. Shannon entropy on very short binary sequences

Looking at Table 2, one may wonder how do these measures (CCM and Shannon
entropy) perform on very short binary sequences (length < 20)? The motivation for
investigating complexity of very short binary sequences is their occurrence in neu-
roscience applications where one is interested in estimating entropy/complexity of
‘spike trains’ (membrane potential waveforms) from neurons [37]. These spike trains
are converted into a binary sequence by choosing a moving window and indicating
whether the neuron under study fires (symbol ‘1’) or not (symbol ‘0’) in that win-
dow [37]. In several instances, a neuron may fire only a few times (10−20 or even
lesser) in the chosen window of the study. Thus, we are interested in the performance
of these measures on such short binary sequences.
To this end, we compute the entropy, LZ and ETC measures on all binary se-

quences of lengths varying from 4 to 16. In order to evaluate the performance of the
measures on binary sequences, we compute the number of levels or distinct values
taken up by the measure for a given length. As it can be seen from Table 4, ETC
has the best performance in terms of having the largest number of distinct levels for
each length of the binary sequence. It is desirable to have a large number of distinct
values since this allows us to distinguish between individual binary sequences more
finely. We also indicate the means for the three measures. Though we use a normal-
ization for LZ, it yields values greater than 1 owing to the problem of finite data
lengths (see [35,36]). Both normalized ETC and Shannon entropy H do not have this
problem and are always bounded between 0 and 1.

4 Two-state Markov chains

As previously noted, Markov chains are very important models in statistical mechanics
as well as in several applications ranging from biomedical engineering to financial time
series analysis. In this section, we are concerned with characterizing the dynamical
complexity of two-state Markov chains. We first briefly introduce the notion of Markov
chains and subsequently study the performance of LZ and ETC on two-state Markov
chains.



Aspects of Statistical Mechanics and Dynamical Complexity 2201

Definition: A discrete random process X1,X2, . . . is said to be a first order Markov
chain or a Markov process if, for all n = 1, 2 . . ., Pr(Xn+1 = xn+1|Xn = xn,Xn−1 =
xn−1, . . . , X1 = x1) = Pr(Xn+1 = xn+1|Xn) [48], where Pr stands for probability,
n for discrete-time index and Pr(Xn+1 = A|Xn = B) stands for the conditional prob-
ability of being in state A at time instant n+ 1, given that the current state is B (at
time instant n). Alternatively, we may define a first order Markov process as a ran-
dom process whose future state depends only on the current state and doesn’t directly
depend on how the current state was reached. This makes it possible to characterize
it by a transition probability matrix that defines the probability of transitions from
each state to itself and to other states. The characterization of the Markov process
is completed by also defining the outputs produced at each state. This leads us to
the concept of a Markov information source. A Markov information source may be
thought of as a combination of a finite state Markov chain along with a function with
domain the set of states S, and range, the possible outputs of all states (known as the
alphabet of the source) [48]. Thus a Markov source produces a series of outputs as it
transitions from one state to another according to the state transition probabilities.

4.1 Comparative analysis of LZ and ETC measures on a two-state
Markov process

Lempel-Ziv complexity, which was introduced in Section 3.1, is based on the rate of
generation of new patterns in a sequence. It will be observed later that calculation of
Lempel-Ziv complexity on data from a Markov process tends to reach a steady state
value that is given by the entropy rate of a Markov Process. As a preview of that,
we now define the entropy rate of any stochastic process.
Since a stochastic process consists of sequence of random variables, naturally

we would like to know how the entropy of the sequence changes with the number
of random variables n. This rate of growth of the entropy with n is defined as the
entropy rate (H) of a stochastic process.

Definition: The entropy rate of a stochastic process χ = {Xi} is defined by

H(χ) = lim
n→∞

H(X1,X2, .....Xn)

n
. (7)

For a first order Markov chain (we assume that it is a stationary Markov process
– i.e., state transition probabilities don’t change with time) the entropy rate is
defined as:

H(χ) = lim
n→∞H(Xn/Xn−1) = H(X2/X1) = −

∑

ij

μiPij logPij . (8)

In this equation, μi is the stationary probability of the i
th state and Pij gives

the transition probability from the ith state to the jth state. Specifically, for a
two-state Markov chain as shown in Figure 5, μ1 = P01/(P01 + P10) and μ2 =
P10/(P01 + P10). [48].
As a first step towards the study of entropy of neural spike trains, Amigo et al. in

[37], simulate a two-state Markov process as shown in Figure 5 with transition prob-
abilities P10 = 0.8 and P01 = 0.1 and calculate normalized Lempel-Ziv complexity for
varying data lengths to identify how fast it converges to a steady state value.
We recreate a similar Markov chain to generate data and find the LZ and ETC

complexity measures and compare the rate at which both converge to a steady state
value. Since it is a stochastic process, the simulations are run 50 times and the average
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Fig. 5. A Two-state Markov Chain. The transition probabilities P10 and P01 correspond to
transition from state 1 to 0 and 0 to 1 respectively.
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faster convergence for ETC. The plot shows the average values taken over 50 iterations.
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Fig. 7. Standard deviation of the complexity values in each block with increasing data
length.

value of the measures are taken. To plot the complexity values, instead of plotting
values for each length, a moving window of size 20 is chosen, each window is considered
as a block, and the mean values in each block is plotted. LZ complexity converges
to the true entropy value [37], while the steady state value of the ETC measure is
taken to be the mean ETC value in a window where the variation of the measure is
less than 2% of the mean value. Figure 6 shows the comparative analysis of both the
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measures, from which it can be seen that ETC converges faster to the steady state
than LZ measure.
Figure 7 shows the standard deviations of the measures in each block. It can be

seen that the variations in the LZ measure are much greater than the variations in
the ETC measure. This may be considered as an indicator that ETC is a more robust
measure and may be used with shorter data lengths than what is possible with LZ
measure.

5 Conclusions and future work

We have considered the important problem of characterizing the dynamical complex-
ity of short and noisy time series from chaotic dynamical systems and Markov chains,
as these have practical applications in modeling. We found that Shannon entropy is
not very effective for this problem. We introduced CCMs – Compression Complexity
Measures – defined as those complexity measures which are based on lossless compres-
sion algorithms. CCMs outperform Shannon entropy for characterizing complexity of
both discrete and continuous chaotic dynamical systems, even in the presence of ad-
ditive gaussian noise, as we have demonstrated convincingly in this work. For 2-State
Markov chains, we have empirically shown that ETC converges faster than the pop-
ular LZ complexity. Also, ETC has more number of distinct levels of complexities
than H and LZ for very short binary sequences which could be potentially useful
in neuroscience applications in determining complexity of spike trains. One area of
future research is to determine the steady state value of ETC for Markov chains and
if possible to arrive at analytical expression/bounds for the same. We also need to
extend the application of ETC and LZ to Markov chains with more number of states.
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