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Large amplitude local density fluctuations in a thin superlluid "He film is considered. It is 
shown that these large amplitude fluctuations travel and behave like "quasi-soli tons" under 
collision, even when the full nonlinearity arising from the Van der Waals potential is taken 
into account. 

Recently, the propagation of soli tons on thin helium films has attracted 
considerable attention of both experimentalists and theorists. It has provided a 
wealth of information on the microscopic properties of superfluid helium. 
Huberman' was the first to point out the possibility -that the nonlinear local 
density fluctuations in very thin 4He films may travel unattenuated for large 
times. Later Nakajima et al.2 derived the Korteweg de Vries (KdV) equation for 
two dimensional helium films by considering one dimensional solitary waves 
propagating along one direction. Starting from the phenomenological equation of 
motion as proposed by Rutledge et al./ a quite different result was obtained by 
Biswas and Warke,· wherein the coefficients of the nonlinear term in the KdV 
equation was chosen differently from that considered by Huberman. 

Later Biswas and Warkes generalized their earlier result to quasi two 
dimensional wave propagation (where essentially the direction of the propaga­
tion was chosen to be along the x-axis and the y dependence was assumed to be 
weak) and obtained the Kadomtsev-Petviashvili (K-P) equation. They estab­
lished that in two dimensional superfluid 4He films, the one dimensional solitons 
do not represent stable states in general. Using these results, we have!> studied the 
phenomenon of two soliton resonance of the K-P equation for the superfluid 
surface density fluctuations and obtained the velocity of the resonant soliton. 

In all the work sited above, only the lowest nonlinearity was taken into account. 
Kurihara 1 was the first to study the dynamics of wave propagation when the com­
plete nonlinear form of the Van der Waals potential is retained. The analysis was 
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done numerically and he obtained the result that there exists soliton-like 
localized excitations, "quasi-soli tons", which behave like quasi-particles and 
have a high degree of stability under collisions. These solitons had profiles which 
are localized along only one of the directions. 

In this letter, we report the study of wave propagation on a two-dimensional 
'He film, taking into account the full nonlinearity of the Van der Waals potential. 
The analysis is done numerically as an initial value problem where an arbitrary 
gaussian initial profile is used. This is essentially an extension of the work of 
Kurihara to a situation where the initial profile decayed in both x and y 
directions. These are hence localized in two dimensions. 

We start with the equation of motion for the superfluid density fluctuation. 3 

(I) 

where m = mass of 'He atom, A and a are constants of Van der Waals inter­
action, Jl = chemical potential and B is the surface tension. This equation has 
recently been obtained by Balakrishnan et al.l by starting from a microscopic 
theory of nonlinear dynamics in superfluid 4He, formulated using a model in 
which a system of bosons with hard cores plus attractive nearest neighbor 
interactions is described by a pseudospin hamiltonian on a lattice. For the 
monolayer films, we are going to consider, B = 0.) If we search for a solution of 
the form I/I(x, y, t) = p1 /2 (x, y, t) tI-"x,y,t), where pAx, y, t) is the superfluid density, 
one would get the two dimensional continuity equation) 

(JP. • 
-+V'J =0 01 J' 

(2) 

wherej.(x, y, I) = Re [(h/im) "'*V", ) is the quantum-mechanical current density. 
For the purpose of numerical analysis, we transform Eq. (I) to a dimensionless 

form. We assume that '" depends only on the time coordinate t and space 
coordinates x and y. The scale for'" is its equilibrium value 1/10, obtained from the 
relation 

(3) 

We can fix the equilibrium value of the superfluid thickness as 

do = ",~/a. (4) 
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Scales fOf the space coordinates and time coordinate are fixed by the characteris­
tic wave vector k and frequency w 

k- --[
2mW]1/2 

hI ' 
w = W/Ii, (5) 

where W = A/a l
(\ +d(i is the Van der Waals energy. Now we can rewrite Eq. (I) 

in the normalized form 

(6) 

where X = 'JINo, e = kx, 71 = ky, and l' =- wt. 
Since for such a monolayer superfluid film we cannot have surface deforma­

tions, we will be studying the superftuid density fluctuations occuring in the two 
dimensional film. We assume that initially the superfluid density is locally 
altered. For example, this could be done by heating the film locally. After this is 
done Eq. (2) would hold. 

For the sake of simplicity we look for solutions propagating along {-axis. The 
size of the superfluid film (is 100 along the ~-direction) is chosen arbitrarily in 
such a way as to be larger than the characteristic size of the localized excitations. 
Equation (6) is treated as an initial value problem. It is assumed that at t = 0 the 
whole superfluid is at rest - that is we choose the initial value of the phase of the 
wave. to be constant throughout the film. The dynamics of the system is 
independent of the actual value of this constant. 

Our numerical results are shown in Figs. I and 2. Figure I shows the time ev~ 
lution of the superfluid density fluctuations a( {, 71, 't) = 1 'JI( {, 71, 1') 12 - 1 for an in­
itial gaussian profile 

a(~.l1, r) = Qoexp{- [(~ - 25)/5}z - {(11- SO)/S512~ (7) 

We impose the periodic boundary condition, a( 100, 11, T) = a(O, 11. r). Since no 
surface deformations occurs to the monolayer film, we do not have to take the 
kinematic boundary conditions. The parameters chosen afe do = I and llo = 0.2. 

The superfluid velocity corresponding to the density fluctuations are plotted in 
Fig. 2. Results for other values of the parameters will be reported elsewhere.9 

Two solitons emerge from the single peak and travel in opposite directions. 
These solitons preserve their identity after interaction among each other and are 
quite stable. Under close examination these peaks are found to be asymmetric. 
These solitons, "quasi-solitons" are not completely stable as the large time 
behavior might suggest. The finite life time of the solitons as well as the 
asymmetry arise essentially from the higher order nonlinearity. 
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We have shown numerically that even under strong nonlinearity the two­
dimensional 4He films admit stable composite quasi-solitons of the superfJuid 
density fluctuations and the superfluid velocity. These solitons are quite different 
from those obtained in the case of K-P equation or the two dimensional cubic 
nonJinear SchrOdinger equation. In this letter we have not studied the resistance 
of the soliton to diffraction, which we plan to do under separate work. 
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