
  165

Re-architecture of Database Software Stack with Planner
module for query optimization in a Cloud Environment

 Kamalanathan Kandasamy

 Amrita Center for Cyber Security
 Amrita Vishwa Vidyapeetham
 Kollam, Kerala – 690525, India
 kamalanathan@am.amrita.edu

Krishnashree Achuthan

Kollam, Kerala – 690525, India
krishna@amrita.edu

ABSTRACT
Nowadays public clouds offer a scalability that is often
beyond what a user would be able to afford otherwise.
Cloud bursting allows businesses leverage the cloud
without losing the comfort and control of in-house data
centre operations. Looking at cost, security and
resource utilization angles we need a dynamic
infrastructure to decide about the hybrid mix ie, private
and public clouds. In this paper, we propose a general
paradigm where software stacks need to be re-
architected to dynamically be able to run either in
public or private clouds. The queries get executed in
private or public clouds based on cost, security and
resource utilization models chosen by the clients.

 Categories and Subject Descriptors

C.2.4 [Distributed Databases]

General Terms
Software stack, Query optimization, Query Processing

Keywords
Cloud bursting, Trust model, Cloud security

1. INTRODUCTION

Today lots of companies are looking at how to use the
public clouds since the public clouds provide the
advantages of elasticity & cost benefits. For small and
medium businesses, cost is very important. Cloud bursting
is a deployment model which allows the applications run in
a private cloud or data center and burst into a public cloud
when the demand for computing capacity spikes.

Clients plan to run the steady state business processing on
 existing systems at their private clouds, and then use the
public cloud for periodic or overflow processing. Lots of
the companies are hesitant to use the public clouds due to the
 security problems. For example rogue administrators and
 rogue clients can modify/tamper the data of the clients.

Cloud sourcing refers to sourcing complete solutions to run
the business from the public cloud. The solution provider
that offers Cloud sourcing products or services is called
"Cloud Provider". The Cloud Provider t ypically provides
solutions that knit together cloud applications, cloud
platforms and cloud infrastructure. Cloud sourcing is
popular with few companies if they don't have resources
privately.

There will be a class of customers who will run their
applications in private cloud and then move to public cloud
as the need arises for example when their data increases
due to on demand basis. Below we explain why we
consider security, cost and resource utilization as the three
main inputs to the planner module.

Security:

Client bothers about the security of his data in the public
cloud. For security reasons, the client might place
encrypted data in the public cloud since he doesn’t trust the
public provider. So security is one of the primary concerns
for the client.

Cost :

Network cost, CPU/Computation cost and storage cost are
the cost details to be considered by the client when he
keeps the data in the public cloud. Mainly it's the network
cost that he bothers about.

Resource Utilization :

This is important since the utilization of resources like the
storage disks also decides where to run the query for a
given situation.

Looking at cost, security and resource utilization angles we
need a dynamic infrastructure to decide about the hybrid
mix. From the related work we see that this problem has
not been solved yet. Some of the unique challenges would

 Amrita Center for Cyber Security
 Amrita Vishwa Vidyapeetham

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SecurIT’12, August 17-19, 2012, Kollam, Kerala, India
Copyright 2012 ACM 978-1-4503-1822-8/12/08... $15.00

  166

be how to define the security model, cost model and
resource utilization models and how to dynamically decide
where the query has to be executed which involves
searching all the query nodes and coming up with the best
cost function node and actually re-architect the database
stacks for the execution of the queries.

We are proposing a general paradigm where software
stacks need to be re-architected to dynamically be able to
run either in public or private clouds, and that where they
will execute is based on cost, security and resource
utilization models. In this work we are taking one specific
example (database) stack to show how this paradigm will
work. There can be other example stacks like MapReduce,
or online games that can run dynamically decide to run
either in public or private clouds or at both.

In the cloud environment, currently the clients run their

query at the public provider side. A key insight that we
want to explore is our hypothesis that software program
stacks need to be re-architected to provide better value for
the clients while taking security, cost, and resource
utilization input into account. The goal of this work is to
build a planning tool and to re-architect the existing
database management system software stacks so that the
planning tool will dynamically advise where different
modules of a particular software stack should execute.

The three main aspects of this work would be :

1. Designing a planner/query optimizer which will take
Security, Cost and Resource utilization input requirements
to determine where to execute the different modules (i.e. at
the public cloud or at the private cloud) for a given
scenario.
2. Re-architecting software stacks of the database
management systems into different modules so that the
query is run as planned by the above planner / query
optimizer.
3. Quantitative analysis of different approaches with
respect to performance, cost, security and resource
utilization.

This work helps the clients by allowing them to have better
control - what to run and where based on the above
mentioned three inputs. Clients will be able to do better
match with security/resources etc. and will save money and
time. This is done in a way which is cost & security
conscious. Currently we don’t see the whole notion of this
way of dynamically running the queries in either public or
private or partly in both the clouds.

The rest of the paper is organized as follows. Section 2
discusses the related work in this area. Section 3 presents
the software architecture. Section 4 describes the

implementation. Section 5 presents the Experiments and
finally section 6 concludes with the future work.

2. RELATED WORK

Since this work is about the query processing in cloud
environment based on the security, cost and resource
utilization as the inputs, the related work has been
categorized into the following three buckets :

1) Distributed Query processing :

This gives the idea of the work done in query processing in
the distributed environment since we are dealing with the
query processing in the cloud environment which is also a
distributed system. Lot of work had been done on the
hybrid shipping, which can execute queries at clients,
servers, or any combination of the two. Hybrid-shipping is
shown to be the best of the query shipping and data
shipping policies in [6]. An initial investigation into the use
of a 2-step query optimization strategy has been described
as a way of addressing the query optimization issues.
Partitioning of client application functionality between
client and server is suggested in [8]. A novel algorithm is
discussed in [7] for hybrid shipping based on the available
literature.

The details of the dynamic query execution engine is
presented in [10] within the data query infrastructure that
dynamically adapts to network and node conditions. The
query processing is capable of fully benefiting from all the
distributed resources to minimize the query response time
and maximize system throughput.[11] proposes an adaptive
software architecture, which can effortlessly switch
between MapReduce and parallel DBMS in order to
efficiently process queries regardless of their response
times. Switching between the two architectures is
performed in a transparent manner based on an intuitive
cost model, which computes the expected execution time in
presence of failures. This has the similarity that our
architecture allows the query processing to be switching
between client side, server side and partly on both sides.

The three different execution policies are identified and
evaluated in client-server database systems in [9]. However
this work focuses on rather complex queries and disk-
bound computation. [12] presents an overview of the basic
techniques used to support SQL DML (Data Manipulation
Language) in Microsoft SQL Server. The focus is on the
integration of update operations into the query processor,
the query execution primitives required to support updates,
and the update-specific considerations to analyze and
execute update plans. Full integration of update processing
in the query processor provides a robust and flexible

  167

framework and leverages existing query processing
techniques. The issue of how to intelligently manage the
resources in a shared cloud database system is addressed in
[13] and a cost-aware resource management system is
presented as well. [14] talks about a data management
platform in the cloud where the clients use just a simple,
standard, and uniform language API to access data
management functions as a service. Application only needs
a logical specification of the data access layer and the data
access requests are handled in a declarative way.

 Several design issues related to querying encrypted
relational databases are addressed in [15] & a new method
is proposed based on schema decomposition that partitions
sensitive and non-sensitive attributes of a relation into two
separate relations. This method improves the system
performance dramatically by parallelizing disk IO latency
wit CPU-intensive operations (i.e., encryption/decryption).
The query optimization problem for the encrypted database
systems is modeled and solved in [16] .

2) Trust models in the cloud :

Since security is based on trust between the client and the
public cloud we would want to refer the work done related
to the trust model. There are several existing trust models
for the cloud environment. [3] proposes a trust model of
cloud security in terms of social security. Specifically, the
social insecurity is classified as the multiple stakeholder
problem, the open space security problem, and the mission
critical data handling problem. By adding security
guarantee to conventional service oriented clouds, a
security aware cloud is obtained which is used in
deployment of a cloud in mission critical business
scenarios. [4] introduces a cloud model into the trust
domain, while cloud could maintain the original
characteristics and behaviors of the agents. This paper talks
about the cloud model that combines two kinds of
uncertainties together, which are fuzziness and randomness.
To ensure the correctness of users’ data in the cloud, [17]
proposes an effective and flexible distributed scheme with
two salient features, opposing to its predecessors. By
utilizing the homomorphic token with distributed
verification of erasure-coded data, this scheme achieves the
integration of storage correctness insurance and data error
localization, i.e., the identification of misbehaving
server(s).[18] argues that fundamental risks arise from
sharing physical infrastructure between mutually distrustful
users, even when their actions are isolated through machine
virtualization as within a third-party cloud compute service.
Number of approaches for mitigating this risk is discussed.

3) Cloud Databases :

Cloud Computing Dynamic Route Scheduling is presented
in [20] for Optimization of Cloud Database for enhancing
the efficiency searching database of cloud computing. [21]
discusses Cloud Database-as-a-Service (DaaS) which hosts
databases in the cloud environment and provides database
features such as data definition, storage and retrieval, on a
subscription basis over the Internet. The problem of
resource provisioning for database management systems
operating on top of an Infrastructure-As-A-Service (IaaS)
cloud is discussed in [22] .

3. SOFTWARE ARCHITECTURE

With the emergence of public cloud computing phenomena,
currently, customers are a) running their programs in their
private clouds and storing the results in the public cloud, or
b) running the programs and also storing the results in the
public cloud or c) running the programs in the public cloud
and moving the results to the private cloud. Thus,
customers have many options with respect to where to run
their programs and where to persistently store the results.

We have come up with the new architecture of the existing
database to consider the cost, security and resource
utilization inputs and decide where to execute the query
(either client side or public cloud side). This is shown in the
figure 1 below.

Fig 1. New Cloud Architecture

Data Placement Model :

To execute a query, we need the data in proper place. We
need to move the data if it doesn't exist in the right place.

Well ahead of time we decide where to place the data ie,
depending upon the security constraints whether to place
the data in the public cloud or private cloud or in both the

  168

places. There are three primary factors which can help to
determine where and how to run the client program and
they are:

Security model, Cost model and Resource Utilization
model

Table 1 : Trust relations and Planner output

The following section describes each model in detail.

Security Model: Based on the security (threat perception)
a client wants, one can run a program at the client side or at
the provider side. For example, if the client trusts the
provider, then the client can persistently store data in an
unencrypted format at the provider. On the other hand, if
the client feels that he cannot trust the provider, then the
client has to encrypt the data before sending it to the
provider.

The planner will see the functionality provided by the cloud
provider and decide the output. Here we consider only the
security model as the input. Different combinations of trust
relationship between client, cloud provider, system
administrator and other clients in the same cloud are taken
into account.

Table 2 : Client / Cloud provider Trust relations

Having come up with the trust model for the simple cloud
environment, we would now like to see the planner output
for each of the input. For example when the client doesn't
trust the cloud provider, then the planner should say that
the public cloud should have the encrypted clients data and
that it should be decrypted in the private cloud.

Different trust scenarios and the Planner output are shown
in the table 1. Possible trust relations between different
parties are given in table 2.

Cost Model: Providers charge clients money for running
their programs, or storing their data. Furthermore, clients
also have to pay money for transferring data across the
networks to/from the providers. Thus, depending upon how
much the client is willing to pay, the client might want to
do some processing at the server in order to reduce the
amount of data that it has to transfer to the client. For
example, if the client wants to execute a database query, he
might want to execute the select operation at the server in
order to reduce the amount of data that needs to be sent
back to the client, and then, subsequently perform the join
and project operations at the client.

Resource Utilization Model: Depending upon how
resources are utilized, a client can decide to offload
processing to the server. For example, if most of the
resources at the client site are heavily utilized, the client
can temporarily offload work to the provider, and then
subsequently, move the work back to its private cloud once
the peak load subsides.

3.1 Query Optimizer :

The query optimizer component of an RDBMS chooses an
access plan that specifies the operators that will be used to
execute a query. We have the additional three inputs
namely cost, security and resource utilization.

We can make two levels of decision:

1) Entire query runs either at the public cloud or on

Trust relations Provider
Functions

 Planner module
output

Client trusts the
cloud provider

Isolation Yes :Directly query
from the server

No :Encrypt data in
public cloud,
decrypt it in the
private cloud for
querying

Client trusts the
sys admin

Authentication Yes :Directly query
from the server

No :Encrypt data in
public cloud,
decrypt it in the
private cloud for
querying

Client trusts the
other client in the
cloud

Auditing Yes :Directly query
from the server

No :Encrypt data in
public cloud,
decrypt it in the
private cloud for
querying

 client Sys admin Cloud
provider

Other clients

client NA
No/Yes

No/Yes No/Yes

Cloud
provider

No/Yes No/Yes NA No/Yes

  169

the private cloud
2) A query is broken into parts and part of it runs at

the public cloud and the other part runs in the
private cloud.

Based on the above decisions and by considering all the
input cases and combinations, there are three possibilities
of output as given below.

1) Entire query can be executed at the server/public
cloud

2) Entire query processing can be handled at the
client side/private cloud

3) Part of the query can be executed at the client and
the rest at the server

 input : Query
language

 security

cost Resource utilization

Relational & Physical Algebra

Fig 2 : Query optimizer with NEW inputs (cost, security
and resource utilization)

 The planner module will find the next possible state
from the current state based on the security constraints, cost
and resource utilization. We use the greedy approach or
brute force method to select the next possible state (ie, the
best optimal solution) for a given input case.

The query optimizer can work in the following manners.
 static : planning is well done before the query

starts executing
 dynamic : Just before the query starts executing,

the planning is done quickly.
 Real dynamic :During the execution of the query,

the plan gets changed and these changes get
reflected.

As given in fig 2, planner is the main module of the
ordering stage. It examines all possible execution plans for
each query produced in the previous stage and selects the
overall cheapest one to be used to generate the answer of
the original query. It employs a search strategy, which
examines the space of execution plans in a particular
fashion. This space is determined by two other modules of
the optimizer, the Algebraic Space and the Method-
Structure Space. For the most part, these two modules and
the search strategy determine the cost, i.e., running time, of
the optimizer itself, which should be as low as possible.
The execution plans examined by the Planner are compared
based on estimates of their cost so that the cheapest may be
chosen. These costs are derived by the last two modules of
the optimizer, the Cost Model and the Size-Distribution
Estimator.

Search Space Traversal :

We have seen that the query planner takes 3 inputs and it
tries to optimize the cost function.Travelling thru' each
node we want to choose best node ie, we would like to find
the node that gives the best cost.This method is called
“search space traversal”.

Here each node corresponds to a query plan. A possible
query plan may be :Select 2 tables from public cloud ,join
them in the public cloud itself (since they are in non
encrypted form and the client trusts the provider) and with
this result join another table in the private cloud. This entire
operations can be called as a “query plan”. Brute force
search is done on all the nodes to see which is the best
node. This is almost same as greedy approach. Greedy
approach will select the lowest cost node but this is one
level deep and chooses the best possible node for a given
scenario.

If we have 100 possible nodes then due to the security
input, 50 nodes might become irrelevant. Security, being
one of the main constraints will thus prune the search
space.

The search traversal for a given scenario is explained
below. For eg, consider three tables R1,R2 and R3. For the
given input constraints (say the input constraints are :R1 U
R2 to be executed in the public cloud and R3 at the private
cloud and the network cost is to be minimized and if the
public cloud is busy) Each node is represented as client or
server for each query operation. Depending upon the input
conditions, pruning of the tree nodes is done to get the
desired result. Using the greedy algorithm the search space
will find the most optimal solution for the given input
conditions. Figure 3 gives an idea of this principle.

Query Parser

Code Generator/Interpreter

Query Processor

Query optimizer (decides
where to run the query)

  170

A sample Scenario :

Security model : Client trusts the provider (ie, data kept in
normal form without encryption)

Cost model : Client wants to go for lowcost plan.

Resource utilization : None specified.

Output of the query optimization module : Execute the
query at the Public cloud

Fig 3 : Query execution plan for Query shipping

3.2 Re-architecture of Database stacks:

Once the planner decides where to execute the given query
based on the search traversal as we have seen in the
previous section, now we need to re-architect the DB stack
so that the query is actually executed either at the client or
at the public provider site or at both sides (hybrid
shipping).

Existing DB stack contains the log manager, query
optimizer etc. Components that need to exist in the public
and private cloud need to be decided.

We need to have all of the database components (like
transaction processor, query optimizer, query executer)
have to reside at both private and public cloud. Moreover,
the query executor needs to be able to transfer the query
and data between the private and public clouds as
necessary.

DB engine needs to execute the entire query in either/or
and need to be able to execute in a hybrid manner. Once a
part of the query is executed, the DB engine should be able
to ship the query results, state of the query plan and the
remaining part to be executed. Then the DB engine on the
other part can continue to execute rest of the query.

4. PROPOSED TEST CASES

Based on the above design, we are proposing the following
test cases to experiment with the different scenarios of
query handling.

Test case 1 (With security constraints) :

Depending upon the data placement model, we would want
to compare the different query processing options (ie,
whether the query processing done at private cloud is better
than the query processing done at the public cloud or
both).For example some of the tables are kept only in the
private cloud because of security reasons. So in this case
we select and do the join operations first in the private
cloud and with this result join the data brought over from
the public cloud .

Number of queries Vs cost of the query and Throughput
can be decided. The latency can also be tested

Test case 2 (Without security constraints) :

If there is no security constraints, the data is kept at the
public cloud or we can consider the scenario where the data
is replicated at both private and public clouds. Given this
condition, we would want to again compare the Cost,
Throughput and Latency with the number of queries like
we did in the case of experiment 1.

Here in this experiment we would want to include the
resource utilization constraints (ie, if the data is kept at both
sides and the disk space is too full at the private cloud, we
would want to figure out which query option would suffer.

Here also we would want to compare the Cost, Throughput
and Latency with the number of queries.

Additional Test cases :

We would also compare the throughput for the static and
dynamic modes of the query plan/optimizer. By doing so
we would know the difference of the output (ie, actual
query execution) between the scenarios where the query
hasn't started running yet (static) and the queries are
already running but due to some resource utilization
constraints, the planner needs to dynamically say where to
run the current query.

Select
Query

Query

optimizer

Private
Cloud /
Client

Public Cloud
/ ServerPart in client

& Part in
Server

  171

We would like to compare the output between the existing
system and the system with the new DB architecture.We
would as well compare the output when the client gives the
first priority to security model and when the client gives
priority to cost model. Based on the search space traversal,
the algorithm chooses the best query plan using brute force
method. We'll come to know the different nodes that the
algorithm chooses for security and cost models.

A histogram that shows the security model, cost model and
the resource utilization models for the given set of queries
can also be drawn.

4. CONCLUSION

We have proposed the method of running the queries
dynamically either at private cloud or at public cloud or at
both the places depending upon the security, cost and
resource constraints and the priority of these constraints are
to be given by the client. This is quite helpful in case of
cloud bursting.

To accomplish this, we have come up with the new
planner/query optimizer module and suggested re-
architecting the database stacks to actually execute the
queries.

As a future work, we would like to implement the design
proposed in this paper using Amazon EC2/S3 as public
cloud and amrita server as private cloud. We will modify
the mySQL server and run it on Amazon EC2/S3 cloud.
For the test run we'll keep the data stacks in both public and
private clouds.

5. ACKNOWLWDGEMENT

We would like to express our immense gratitude to our
beloved Chancellor Sri.(Dr.) Mata Amritanandamayi Devi
for providing an excellent motivation and inspiration for
doing this research work.

6. REFERENCES

[1] W. Tang, Z. Chen, “Research of subjective trust
management model based on the fuzzy set theory[J]”,
Journal of Software, 2003, 14(9),pp. 1401-1408.

[2] W. Tang, J.B. Hu, Z. Chen, “Research on a fuzzy logic
based subjective trust management model”, Computer
Research and Development, 2005, 42(10), pp. 1654-
1659Processing, Vol. 56, No. 6, June 2008.

[3] Hiroyuki Sato , Atsushi Kanai , Shigeaki Tanimoto“A

Cloud Trust Model in a Security Aware Cloud ”, 2010 -
10th Annual International Symposium on Applications
and the Internet.

[4] Yang Mo, Wang Lina et al, “A Novel Cloud-Based

Subjective Trust Model”, 2009 International

Conference on Multimedia Information Networking
and Security.

[5] Yanpei Chen, Vern Paxson, Randy H. Katz ,”What’s

New About Cloud Computing Security?”
(http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EE
CS-2010-5.html)

[6] Michael J. Franklin, et al. “Performance Tradeoffs for

Client-Server Query Processing”,SIGMOD '96
Proceedings of the 1996 ACM SIGMOD international
conference on Management of data.

[7] Amit Sharma, et al. Hybrid query execution Model.

[8] Ivan T.Bowman, Hybrid Shipping Architectures : A

Survey.

[9] Donald Kossmann, Michael J. Franklin : A Study of
Query Execution Strategies for Client-Server Database
Systems Technical report, University of Maryland,
1995.

[10] Pawel Jurczyk et al, Dynamic Query Processing for

P2P Data Services in the Cloud EXA '09 Proceedings
of the 20th International Conference on Database and
Expert Systems Applications .

[11] Adrian Daniel Popescu et al,Adaptive Query Execution
for Data Management in the Cloud.

[12] A. Galindo-Legaria et al, Query Processing for SQL
Updates.

[13] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin
Moon, Calton Pu, and Hakan Hacigumus: Intelligent
management of virtualized resources for database
systems in cloud environment. ICDE (2011).

[14] Hakan Hacigumus, Junichi Tatemura, Wang-Pin
Hsiung, Hyun Jin Moon, Oliver Po, Arsany Sawires,
Yun Chi, Hojjat Jafarpour: CloudDB: One Size Fits All
Revived. IEEE SERVICES (2010).

[15] Mustafa Canim,Murat Kantarcioglu,Ali Inan : Query
Optimization in Encrypted Relational Databases by
Vertical Schema Partitioning, ACM SDM '09
Proceedings of the 6th VLDB Workshop on Secure
Data Management.

[16] Hakan Hacıgümüş, Bala Iyer and Sharad Mehrotra :
Query Optimization in Encrypted Database Systems.

[17] Cong Wang, Qian Wang, and Kui Ren ,Wenjing Lou:
Ensuring Data Storage Security in Cloud Computing.

[18] Thomas Ristenpart et al. : Hey, You, Get Off of My
Cloud:Exploring Information Leakage in Third-Party
Compute Clouds.

[19] Liu Jia; Huang Ting-Lei : Dynamic Route Scheduling
for Optimization of Cloud Database , Intelligent
Computing and Integrated Systems (ICISS), 2010.

[20] Islam, Md. Ashfakul; Vrbsky, Susan V : Tree-Based

Consistency Approach for Cloud Databases, Cloud
Computing Technology and Science (CloudCom), 2010
IEEE Second International Conference.

[21] Mateljan, V.; Cisic, D.; Ogrizovic, D : Cloud Database-
as-a-Service (DaaS) – MIPRO, 2010 Proceedings of
the 33rd International Convention

[22] Rogers, J.; Papaemmanouil, O.; Cetintemel, U.:A
generic auto provisioning framework for cloud
databases, Data Engineering Workshops (ICDEW),
2010 IEEE 26th International Conference.

