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Abstract. We present the analytical investigations on a logistic map with a discontinuity at the 
centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We 
establish that whenever the elements of an n~cycle (n > I) approach the discontinuities of the nth 
iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of 
the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also 
shows the presence of multiple attractors. Our results are verified by numerical experiments as well. 
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1. Introduction 

One-dimensional endomorphisms defined in an interval on the real axis have been used in 
modelling a wide vru.iety of nonlinear systems. One of the extensively studied maps in this 
context is the logistic map [1-4]. Investigations on the system by modulating the control 
pru.·ameter have resulted in a class of modulated logistic maps [5-8]. A large number of 
numerical investigations oti discontinuous logistic map have also been reported [9-12]. The 
existence of inverse cascades in which the period changes atithmetically is a novel aspect in 
these systems. The phenomenon of border-collision bifurcations and the formation of 
inverse and direct cascades in one-dimensional piecewise smooth maps have also been 
investigated [13-15]. Similar bifurcations have been observed for other piecewise 
continuous quadratic maps like the circle map [16] and the logistic-like smvtooth map 
[17]. Most of the studies in these systems have been numerical. In what follows, we present 
an analytical study of the logistic map with a discontinuity at the centre. We have observed 
that the system possesses multiple attractors with different basins of attraction. We give 
expressions for the basin bo1mdaries and an explanation for the bifurcation phenomenon in 
this discontinuous system. Numerical findings in support of these resulls are also included. 

The paper is organised as follows. In § 2, we give the details of our investigations on 
the map function. The fixed points of the system and their respective basins of attraction 
are identified. A local stability analysis and an explanation for the new bifurcation 
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scet~ario are presented in § 3. Section 4 deals with the numerical simulations of the map. 
The concluding remarks and comments are given in § 5. 

2. Analysis of the discontinuous logistic map; coMexisten.ce of multiple attractors and 
their basins of attraction 

We consider the logistic map of the following form with a discontinuity at the centre: 

Xn,+l = 4A:rn(l- X11 ); for 0 < X11 :S; I/2, 

Xn+J = 4/\xn(l -- Xn)- C; for 1/2 < X 11 < 1, 
(I) 

where A is the control parameter and C is a constant characterising the su·ength of 
discontinuity. For convenien~e, we write the mapping (l) in the form, Xn-l-l = T(xn), 
where the function T is such that T(x) = f(x) = 4,\x(l- x) for 0 < x <;; 112 and 
T(x) = ip(x) = 4,\x(l- x) + C for 112 < x <I. The shape of the map function is 
shown in figure 1. For each value of C, the control parameter /\ is varied from 0 to 
( 1 - C) so as to confine the iterates within the unit intervaL The fixed point of the left 
part is x' = 0 for values of A ranging from 0 to I I 4. When A > I I 4, the fixed point from 
the left part is 
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Figure 1. The map function defined in eqn. (1). The discontinuity parameter 
C = 0.2 and the control parameter A= 0.4. Note that the two fixed points xi and x; 
co-exist in this case. 
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The fixed point arising from the right part is given by 

' 1 V(4A-1)'+16,\C-I 
X=-+--· ·--. ,. 2 8A (3) 

The fixed point (x;) and its stability properties depend on the two parameters A and C so 
that one can have a desired dynamics for the system by proper choice of/\ and C as in the 
case of combination maps [18,19]. Since x; > (1 12), we have from eq. (3), ,\ + C > 112, 
i.e., A > (1 12- C). Thus x; exists for all ,\ > ( 112- C) and x( appears for 114 < ,\ 
<:; 112. Hence the two fixed points co-exist in the parameter range (112- C) < ,\ <:; l 12. 

The basin of attraction forx; is the set R = { x0 lxo E ( l 12, x,)} where x, is the value of 
x at which ¢(x) = 112. This gives, 

I 
)16,\(A + c- 112) 

x, = 1 2 + . 
8,\ 

(4) 

The basin of attraction for xt is the set of points on the unit interval complementary to the 
set R. The fixed point x; can co-exist with the zero fixed point, if A < 1/4 and 
(A + C) > 1 12. For this, the value of C must be > 1 I 4. Since xT can never co-exist with 
the zero fixed point, the possibility of the co-existence of the three fixed points is ruled 
out. 

3. Stability analysis and bifurcation scenario for the discontinuous map 

We now consider the stability of the fixed points as we move on the parameter space 
(A, C). Keeping C fixed, let,\ be varied from 0 to (1- C). The fixed point x; exhibits 
period doubling when the stability determining slope becomes equal to - L The 
conesponding value of A is given by, 

(1 - 2C) + J (2C- 1 )' + 3 
)q = 4 (5) 

In the limit, C _, 0, ,\1 ~ 0.75, is the value for the logistic map. 
In the usual period doubling route to chaos, the 2-cycle bifurcates to a 4-cycle at a 

parameter value A = A2 and remains stable for a range of A and then the 4-cycle 
bifurcates to an 8-cycle at .\ = ,\3 and so on and these period doublings take place ad 
infinitum. However, in the discontinuous map, a different type of bifurcation takes place 
when A is increased. Both the elements x~ and~ of the 2-cycle lie within the interval 
R = (1/2 1x,). As.\ increases, the cycle elements move out. The lower element xt moves 
towards I 12 and the upper element x; approaches x,.. Let xj = (I /2 + E). Then 
x; ='/>(x[) =(A +C- 4,\E2

). In the limit'~> 0, x; ~ (112)+ and x~ ~; (,.\ + C)_. Now, the 
slope of ¢2 (x)lx'x' = 64,\2 (xi·-112)(x;-112). In the limit E -> 0, the slope of 
r/>2 (x)lx• ,, ~o. Tl;;,~ the limiting 2-cycle {(112)_"' (,.\+C)_} is a stable one. This 2-

p· 2 ' 
cycle continues upto ,\=A,., at which the right element (,\+C) = x,. Using eq. (4), 

(~- C) + Vl + (~- C)2 

~= 2 . (~ 
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The next iterate of x,, say, x, = T(x,) = qJ(x,.) = 1/2, falls on the left branch. Conse
quently, the second iterate of x,. is decided not by the function 'p(x), but by f(x), i.e., 
x2 = T 2 (x,) = 7'(1/2) = /(1 /2) = .\,. Now, since.\, is greater than 1/2, (for C < 1/2, as 
is usually the case), the second iterate of Xr comes back to the interval (l/2 1 Xr). The 
subsequent iterates are deciUecl by the function (p. Thus we get a sequence of iterates, 
{x,, ,j,(xz), q\2 (x,), . . , rj/(x,), ... } and the 2-cycle behaviour is lost. These iterates are 
attracted towards a 'virtual' 2-cycle {(l/2)+,x,.} (i.e., the 2-cycle that the system would 
have, if the mapping were (jJ(x) on both sides of the extremum). Once x,. is reached, the 
process is repeated. The system thus exhibits a large periodicity n, which is highly 
dependent on the precision of the computer. The period n will be even or odd depending 
on whether Xz > x;~ or Xz < x;, where x; is the fixed point (unstable) of ¢;(x) and xz is the 
second iterate of Xr. Let us consider the two cases separately. Case (1): xz > x;1~. Since xz 
lies to the right of x;, its iterate, qJ(xz) < ,P(x;). (For the function ¢is a monotonically 
decreasing one). But, (P(x;) = x;:. Therefore (P(x2 ) < x;. Now, since rj;(xz) < x;, its iterate 
¢ 2 (x2 ) = ,p[q,(x,)]lies to the right of x;. Continuing like this, we see that the odd iterates 
of x2 (viz., ¢(x2 ),¢3 (x,),¢5 (x2 ),¢7 (x,),. lie to the left of x; and the even iterates 
r/o'(x2 ), ¢4 (x,), rp6 (x2 ), ... lie to the right of x;. Since 'P(x) is a decreasing function of x for 
any x E ( 1/2, I), ¢ 2 (x) is an increasing function of x for all x for which ,P(x) is greater 
than I /2. Thus ¢2 (x) is an increasing function of x for all x in (I /2, x,). Also, since x; is 
an unstable fixed point of ,P(x), the behaviour of ¢2 (x) on either side of x; is such that 
¢2 (.x) > x for x > r (P2 (x) < x for x < x; and <J}(x) = x for x = x;. Thus since xz > x;, 
its second iterate ¢2 (x,) > x,. Again, since rf;'(xz) > x;, rp4 (x2 ) > ¢2 (x2 ). Similarly, 
¢6 (x2 ) > ¢ 4 (x,) and so on. Likewise, since ¢(x2 ) < x;, rjJ3 (x2 ) < ,P(xz); ¢5 (x2 ) < ¢ 3 (x2 ) 

and so on. Thus we have an ordering for the iterates as, 

x; < Xz < ¢2 (xz) < ,P'(x,) < ,P6(xz) < · and 

x; > ,P(xz) > ¢ 3 (x,) > ¢ 5 (xz) > ¢ 7 (xz) > · 

Thus it is clear that the even iterates ¢2 (x2 ), ¢4 (xz), ¢6 (x2 ), ... tend to Xr and the odd 
iterates ¢(xz),rjJ3 (x2),¢5 (xz),rf;'(x2), ... move towards (1/2).,.· Thus at some stage of 
iteration, ¢2r(xz) becomes infinitesimally close to Xr· This iterate will be considered as Xr 

itself by the computer and the sequence of iterates will be repeated. The value of r 

depends on the precisjon used in the computation. Thus we haVe a cycle of periodicity 
n = 2r + 2. Case (2): xz < x;. Following the same procedure as for case ( 1 ), we see that 
the sequence of iterates have the ordering, 

x;· > x2 > 'P2(xz) > rp4(xz) > rjJ6(x,) > · and 

x; < rp(xz) < q?(xz) < rp5(xz) < ¢7 (x2) < · · · 

Here, the odd iterates of xz move towards x,. and the even iterates approach (1/2)+. Thus 
at some stage of iteration, we have ¢2r+l (x2 ) = Xr, resulting in a cycle of period 
n = 2r + 3. lf the map function were rjJ(x) = 4.\x(l - x) + C throughout the interval 
(0, 1), the role of C would be that of an additive constant applied to the logistic map [20] 
and the system would still have a stable 2-perioclic behaviour. When the value of ..\ is 
slightly greater than /\,., the 'virtual' 2-cycle (x~, x;) falls outside [1 /2, x,.], i.e., say, 
x'; < 1/2 and x~ > x,.. Once x; ls attained, the next iterate x 1 falls in the interval (0, 1/2). 
The image of this point under the mapping.f, falls inside the interval [1/2,x,.]. This point, 
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Figure 2. (a). Graphical representation of the outward spiralling of the iterates to an 
attractor of a large periodicity at the parameter value /\ = .-\., for C """' 0.1. For this 
choice of C, the second iterate of Xr lies to the right of the unstable fixed point x;. Note 
that the even iterates ofx2 approach x,. and the odd iterate.•;; approach l/2. (b). Same as 
that in (a) except that the value of C in this case is 0.2. Here, the second iterate of x,. is 
less than x;. Also the odd iterates of x2 approach Xr and the even iterates approach 1/2. 
The periodicity of the cycle is odd in this case. 
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Figure 3. The lime-plot of the system in eqn. (1 ). The value of C is taken as 0.1. 
Case (a) cotTesponds to the control parameter A slightly less than A,. and case (b) is for 
.\ > /\·. 104 iterates have been left for transients and the subsequent iterates are plotted 
against the iteration number. The system stabilises to a 2-cyclc in the first case; in the 
second case, the periodicity is 18. 
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under repeated iterations by (j;(x) approaches the virtual 2-cycle and the whole process is 
repeated. The outward spiralling of the iterates to an n-peJioclic attractor is shown in 
figure 2 a and b for two typical cases of C = 0."1 and C = 0.2 corresponding to even and 
odd peliods respectively. The behaviour of the iterates of the map for values of .\ 
immediately belm:v and above .\r can be easily understood from figures 3 a and b. In the 
period doubling process, the slope of the function at the bifurcation point is -l. But in the 
case of bifurcation of the 2-cycle to ann-cycle, the slope of (pl(x) = 0 at the bifurcation 
point. i.e., the 2-cycle bifurcates to an n-cycle at the superstable point. The elements of 
then-cycle are fixed points of Tn(x). The outermost element of the cycle is greater than 
Xr; the next element Xt < 1/2. All the subsequent elements, namely, x2,x3,X4 1 ••• 1 X11-t 

fall inside the open interval (lj2,xr) and the nth iterate X11 = x;, within the precision 
used. With increase of .\, the cycle elements move out until at smne value of .\, the 
interval boundary Xr is reached by Xn-2· The peliodicity of the system is thus lowered by 
2. From the expression for Xr, it is clear thatx,. increases (very slowly) with.\ and that one 
set of a] ternate iterates are repelled by x;~ towards one side and the other set of alternate 
iterates to the other side. \Vith further increase of .\, the outermost element increases 
beyond the corresponding value of Xr and the cycle element nearest to Xr within ( 1 /2) x,.) 
moves towards x,. until at some stage, Xn-4 becomes equal to Xn resulting in a cycle of 
period (n- 4). Proceeding like this, it can be seen that as .\increases beyond/\·, there 
exist different ranges of the parameter .\, for which cycles of periods decreasing by 2 
exist. Based on similar arguments, it can be seen that different levels of inverse cascades 
in which the periods decrease in arithmetic progressions are possible; the common 
differences of the progressions will be even numbers, since only alternate iterates move 
towards one boundary of [1j2,xr] [11 1 12]. Again, the bifurcations within an inverse 
cascade occur whenever one of the cycle elements approaches the discontinuity of T(x) at 
x = 1/2 and the another element approaches Xr. [In this case, all the cycle elements 
approach the discontinuities of the nth iterate of the map where n is the period of the 
cycle]. A given cycle of period n can exhibit the usual period-doubling bifurcation, if the 
slope of the nth iterate becomes -1 and the cycle loses stability before its elements 
collide with the discontinuity. The bifurcation process continues until the iterates become 
aperiodic at a parameter value (.\00 ) and the system enters the chaotic region. 

4. Numerical results 

In this section we present the numerical studies conducted to check the validity of the 
conclusions in the previous section. Keeping C fixed, we have done a detailed numerical 
analysis of the system, by varying the control parameter A. Figure 4 shows a bifurcation 
diagram for various values ofxo in the interval (0, 1) and for C = 0.2. For 0 < /\ < 1/4, 
the system stabilises to the zero fixed point. The attract or xf' exists for 1 j 4 < .\ < 1 /2. 
For values of.\ > 0.3, the fixed point.:<: is observed. The two attractors x; and x;1: co-exist 
for 0.3 < .\ < 0.5. x; undergoes period-doubling at a particular parameter value (.\ 1 ). The 
two cycle behaviour continues for values of A in the range (.\ 1 , /\.) and then bifurcates 
into a cycle of large periodicity at .\ = Ar. This periodicity is found to depend on the 
precision used in the computation. The logistic map with a discontinuity at the centre 
belongs to the class of maps with precision dependent periods [21]. When .\ is increased 
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Figure 4. A bifurcation diagram of the discontinuous logistic map for various initial 
points in (0,1). The control parameter A is varied from 0 to 0.8. An initial number of 
104 iterates have been left for transients and the next lcf points are plotted against 
each vaiue of A. Note that the 2-cycle suddenly bifurcates to an n-cycle, when one of 
its elements touches the discontinuity at x = 1/2 and the other element becomes Xr. 

beyond Ar, the periods decrease by 2. We have observed cycles of periodicities 
16, 14, 12) ... in the case of C = 0.1 and 13,11,9 ... in the case of C = 0.2. The system 
showed no sign of chaos near the parameter value . .\., as is clear from the negative value 
of the Lyapunov characteristic exponent. The usual period-doubling process is also 
observed. There is excellent agreement with the theory which verifies our analysis. 

5. Conclusion 

The work presented above gives a theoretical description of the nature of bifurcations in 
discontinuous systems. We have shown that the discontinuous logistic map has got 
multiple attractors with different basins of attraction. VVe also g;ve expressions for the 
basin boundaries. An explanation for the bifurcation phenomenon of the map is 
presented. In contrast to the standard pitchfork bifurcation in which the slope of a cycle 
becomes -1 at the bifurcation point, discontinuous map shows a bifurcation whenever a 
cycle element touches the discontinuity of the map. Our results are verified by numerical 
investigations of the map. 
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