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This is a sequcllO our earlier work on the modulated losistic map. Here. wc first show that the map comes under the universality 
class of Fci&enbaum. We then give evidence for the fact that our model can senerate strange attraCloB in the unit square for an 
uncountable number of parameter values iD the ranae JI... < 11 < I. Numerical plots of the auraClor for several values of 11 are given 
and the sclf-similar structure is explicitly shown iD onc case. The fractal and information dimensions of the attraClOB for many 
values of 11 are shown to be pelter than one and the variation in their struClure is analysed using the two Lyapunov exponents of 
the system. Our results sugcst that the map can be considered as an ana10sue of the losistic map in two dimensions and may be 
useful in describin& certain hiaher dime:nsional chaotic phenomena. 

I. Introduction 

Recently, we introduced a "modulated" logistic 
map 

X,+I =41,X,{I-X,) , 

).,+1 =4Jl4,(l-).,) " (I) 

and established many interesting properties for this 
system including the universal metric as well as 
structural properties of unimodal maps [1,2]. The 
value of the control parameter Jl determines the 
asymptotic behaviour of the map. Note that the map 
has the following properties analogous to the logistic 
map: 

(a) It consists of two coupled first order differ
ence equations which map the unit square {x, 
).]O"x" 1, O"..l" l} in R2 into itself for JlE [0, 1) 
and is continuous over the interval. 

(b) It can be included in a on~parameter family 
of maps. 

(c) For a given value of Jl, there is a unique at
iractor for the map that "owns" almost all initial 
conditions in the unit square. This is true even in the 
chaotic regime where there are infInitely many dif
ferent periodic orbits and an uncountable number of 
asymptotically aperiodic orbits. Also, the infinite 
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number of periodic windows in the chaotic region, 
some of which are large and some unimaginably 
small, are all arranged along the parameter axis ex
actly in tbe same order as in the case of the logistic 
map. In the present Letter, we investigate this map 
in detail using various tools such as renormalisation, 
Lyapunov exponent and frtictal dimension and show 
that the system possesses many fascinating features. 

2. U niYersal scaiilla 

As we know, most of the interest in the study of 
chaotic systems was stimulated by the discovery of 
universal metric properties in quadratic maps by 
Feigenbaum [3,4). We have already shown [1) that 
our map turns chaotic with the Feigenbaum ratio J. 
Here we calculate the rescaling coefficient a of OUT 

system using the renormalisation method developed 
by HeUeman [5,6]. Since the map (l) is two-di
mensional, there exist two rescaling coefficients for 
the map. Moreover, the coefficient for the variable 
1 has to be necessarily a. Our aim is to calculate the 
second one, say a', for the variable X. The basic 
principle of the method is to look for the local be
haviour about a periodic orbit of the map by ex
panding it about a periodic point, up to and includ-
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ing second order Taylor terms in the deviations. After 
proper scaling and counting t modulo 2, the qua
dratic part of the mapping about the periodic orbit 
becomes identical to the original equation we started 
with. Since .( is decoupled from X in the map (1), 
a small variation in X about a periodic point does 
not lead to a variation in the 1-cycle. 

Let (Ai, 1 ~) be a periodic point of the map (1). 
Taking a small variation M, for X, about the peri
odic orbit, the variational equation for X, can be 
written as 

M,+\ =41~(l-2Ai)M,-41nM,)2. (2) 

Putting 1=21,+ I in (2) and taking a periodic orbit 
of period 2, denoted by 

(xt"li.,)=(Xt,1t), (-l1.,+ .. ).~,,+')=(-l1,.(n, 

we get 

M2'I+l =41t( 1-2-l1)M2'I+\ -41J( M 2.,+ 1)2. 

(3) 

Now, putting t=Dt-in (2), 

AX2'I+1 =4.lTO-2XT)AX2'I-4.lT( AX2'I)2 . (4) 

Putting (4) into (3) and collecting terms up to qua
dratic in M2>p we obtain 

M2'I+2 =4141T1~( 1-2AjH 1-2Xn ]M2'I 

-4[ 16.(f).~( 1-2Aj)2+41T,t~( 1-2~)] (M2'I)2 

=4P"M2.,-4Q,,(6X2'I)2. (5) 

Now, taking Y,,= a' M211' where a' = Q"I P., we get 
the "renonnalised" mapping 

Y.,+1 =4P.,Y,,( 1- Y.,) , (6) 

which is identical to the original equation. The re
scaling coefficient a' is given by 

,_ ~(I-2XT)2+(l-2~) 
a - (I !X!){1 U'i) . (7) 

Note that a' is determined by the control parameter 
p. since X- and 1· are given in terms of p.. Using the 
expressions for the stable two-cycle of the map (1) 
obtained by us (7) in the renormalisation limit /loo. 

we get the rescaling coefficient as a' = 2.6545422 - a 
as a first order approximation. In other words, both 
the rescaling coefficients of the map (I) are the same 
and are equal to a. Thus the map shows the uni-
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versal scaling behaviour in addition to the other uni
versal properties of the logistic map already reported. 

3. StraDp attractors 

Strange attractors, with their fractal structure [8], 
have played a major role in our understanding of the 
properties of chaotic dynamical systems since their 
first discovery by Lorenz [9]. Here our aim is to show 
the existence of strange attractors for the map (1) 
for many values of the parameter (in fact uncount
able in number, as we shall see below) and to cal
culate the two important measures characterising 
them, namely, the fractal and information 
dimensions. 

In order to decide whether an attractor is periodic 
or chaotic, we must look at the spectrum of Lya
punov exponents (LE) characterising the attractor. 
For the map (I), we can define two LEs [10], say 
(1\ and (12, measuring the exPonential divergence 
along the X and .( directions respectively. It is easy 
to sec that (12 is the same as the LE of the logistic map. 
Now, as we sec below, (1\ is always negative inde
pendent of the value of p.. This indicates that when 
(12) 0, the attractor can possibly be strange due to 
the stretching and folding of the trajectories on the 
unit square. We now choose one such value, say. 
Jl=0.895 and show the corresponding attractor in fig. 
la by plotting 8000 points after the initial 5000 points 
were discarded. Taking a small region of the attrac
tor indicated by a box in the fIgure and enlarging it 
we get fig. 1 b and repeating this process once again 
we get fig. I c. From the figures, it is clear that the 
attractor has a self-similar structure, which is in fact 
very much similar to that of the Henon attractor 
[ I1 J. We can also give a simple reason as a support 
to this numerical evidence. From tbe Cantor set {8] 
structure of the l-values in the interval [0, 1] for 
(12) 0, it directly fonows that any two arbitrarily close 
points on the attractor will have another point in be
tween (for a sufficiently large number of iterations) 
making the attractor self-similar. But it is found that 
the self-similar structure becomes less pronounced 
within the limits of numerical precision for larger 
values of the parameter. The reason for this can be 
attributed to the observed variation in the values of 
(1) and (12, shown in fig. 3 below. 
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Fi .. 1. A plot of tile attractor of map (I) for p.O.89S. (b) and 
(c) were obtaiDed by enlargiDa the squared rqioDa of the pre
vious fisurea &Dd clearly display the self-similar structure of tbe 
attractor. 

We now present a numerical plot of the attractor 
in fig. 2 for six different values of /L For p just be
yond 1loD. the attractor consists of several disjoint sets 
and finally becomes a single piece for sufficiently 
large value of p. This structure variation necessarily 
reflects the band merging in the logistic map. Now, 
the values of Jl at which 0'2> 0 are uncountable in 
number and form a set of positive measure on the 
parameter axis [ 12,13]. So, in principle, the map can 
be said to generate an uncountable number of strange 
attractors in the unit square apart from the infinite 
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number of periodic cycles already shown. Here, we 
want to make one point clear. We see from fig. 3 be
low that for sufficiently large values of p the sum of 
the LEs is larger than zero implying that the area ele
ments grow on the average. But we call the resulting 
fraetal set a "strange attractor" because it satisfies 
other properties of an attractor. For example, it is a 
bounded region to which almost aIJ other initial con
ditions in the unit square get attracted asymptoti
cally. Moreover, it forms an invariant set every part 
of which is eventually visited by the iterates. 

One important question regarding a strange at
tractor is its dimension. Even though there are a va
riety of different definitions of dimension, the most 
relevant ones are of two types. One depending only 
on metric properties and the other depending on 
metric as well as probabilistic properties. The former 
one is called the HausdorfT or fractal dimension [8] 
which we denote by Do while the latter is the di
mension of the natural measure more commonly 
known as the information dimension and denoted 
by D •. Even though one can define an infinite num
ber of generalised dimensions D. [14] for a strange 
attractor, it is sufficient to know the above two di
mensions for our purpose here. For further details 
regarding the dimension, see ref. [15]. 

The fractal dimension of a set is given by 

. logN(t) 
Do=~~~ log(l/t) , (8) 

where, if the set in question is a bounded subset of 
an m-dimensional Euclidean space Rm, then N ( E) is 
the minimum number of m-dimensional cubes of side 
E needed to cover the set. From fig. 2 it can be easily 
seen that some regions of the attractor are more 
probable than others. So, in order to understand the 
dynamics on a chaotic attractor, one must also take 
into account the distribution or density of points on 
the attractor. This is more precisely discussed in 
terms of D. which is given by 

D I
· J(E) .= lm , t_Olog(I/E) 

(9) 

where 

N(t) 

J(E)= L P/log(l/P;) ( 10) 
{=l 
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Fig. 2. Strance attnlCtors of our map for parameter vallles (a> 0.898; (b) 0.903; (c) 0.91S; (d) 0.92; (e) 0.93 and (f) 0.98.10 eachcasc, 
8000 points were IISed to plot the anzactor after discarding the jnitial 5000 points. Note that initially. the attractor consists of scvuaI 
disjoint sets and merge into a single piecz as lA increases. 

and PI is the probability contained within the ith 
cube. It can be easily shown that Do ~ Dh where the 
equality sign holds if the attractor is uniform. 

In order to compute these quantities, we made use 
of the familiar box counting algorithm [15]. The 
probability Pi is given by ,.,;/" where '71 is the number 
of points in each box and " is the total number of 
points on the attractor. Calculating N(E) and J(E) 
for various values of E and plotting In N( E) and J( E) 
separately against In( liE), Do and Dl were obtained 
as the asymptotic slopes respectively. Our results are 
presented in table I and in all cases Do> DJ as is 
required. 
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4.Ly~ove~n 

We know that the dimension of a set depends on 
its structure or distribution of points in it. FOT ex
ample, the dimension of a Cantor set depends very 
much on in construction [8]. Strange attractoTS can 
exhibit a wide variety of shapes and the complexity 
of tbese shapes will be related in some way to the rel
ative amounts of stretching and compression which 
in turn depends on the LEs. In order to calculate the 
two LEs ofthe map (1). let us ftrst consider the Ja
cobian matrix of the map: 
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Table 1 
FractallUld information dimensions of the stranac attractors of 
the map ( 1 ) for various parameter values. 

Jl Do D. 

0.89S O.94S4S 0.92920 
0.898 1.04571 1.02326 
0.9 1.09677 1.08S72 
0.903 1.20536 1.ISOO 
0.91S 1.4400 1.4080 
0.92 1.06666 1.05620 
0.93 1.23188 1.19492 
0.94 1.30435 1.2500 
0.98 1.33928 1.32121 
0.995 1.58819 1.5160 

l(X, A.) = (4A(lO-2X) 4X(1-X»). 
4}t(1-21) 

The rate of change of an infinitesimal area by the ap
plication of the map is given by the detenninant of 
leX, ,l.) which, in our case, is different at different 
points along an orbit. Note that the amount by which 
the area is stretched or compressed along the two c0-

ordinate directions are given by tbe eigenvalues A, 
and A2 of J(X, A) since III =A,A2• Twng the prod
uct of the Jacobian matrices leX;, A;) at N iterates 
of the map and letting N-+oo, the average rate of 
stretching or compression along the X and A direc
tions are given by 
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IN ,'/N LI = lim n A!/) 
N_oo i-I 

(11) 

and 

I
N IIIN 

L2 = lim nAil) , 
N ..... qc i_I 

(12) 

where A \1) and A ~i) are simply the diagonal ele
ments of l(X" A./) given vy 

A fi> =4.1.;( 1-2X;) 

and 

A~i> =4J.l( 1-21;) . 

(13) 

(14) 

As we know, Lt and ~ are caUed the Lyapunov 
numbers whose logarithm give the two LEs 0', and 
0'2' It is easy to see that the LEs of our map are in
dependent of the initial conditions since almost all 
initial conditions are attracted towards a unique at
tractor in the unit square. We calculated 0', and 0'2 

numerically using the above equations for several 
values of }t and our results are shown in fig. 3. De
tails of the calculation have already been presented 
elsewhere [7). In the figure, we have shown only a 
few positive values of 0'2 and the corresponding val
ues of 0',. In between, there are an infinite number 
of J.l values with Cl2 < 0 of which only one correspond
ing to the period-3 window is given. From the vari
ation of Cl1 and a2, it becomes clear why the strange 
attraetor becomes more and more stretched out ll"S J.l 
increases. 

Now, it is well known that a direct estimation of 
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Fig. 3. Lyapunov exponents 17, and 172 of map (I) for various 
values of /L This is only to show the variauoa of the positive val
ues of 172 and the correspondina values of 17, which explains why 
the attractor becomes more and more spread out for increasing 
valu~of/.l. 

the dimension D. of the strange attraetor can be made 
in terms of the LEs making use of the Kaplan-Yorke 
conjecture [16,15]. However, it is found that this is 
not possible for our map. This may be due to a typ
ical property of noninvertible maps bounded on an 
interval. Note from fIg. 3 that for larger values of p., 
0'. +0'2>0 which implies that the stretching is glob
ally predominant. For an N-dimensional flow or the 
related (N - 1 )-dimensional invertible map to be 
chaotic, the largest LE should be >0 while 2P/<0 
[ 10,17], implying that the phase space volume must 
contract globally. The main point is that for such sys
tems there is a well defined condition in terms of the 
LEs which determine the existence of a strange at
tractor. Now, for non invertible maps on an interval, 
this link between the volume contraction and the ex
ponential divergence of nearby trajectories is broken 
[ 10]. For such systems, a bounded chaotic motion 
can occur even if 2; 0'; > 0 as is evident from our map. 
The reason for this depends crucially on the fun-
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damental property of transfonnation, namely. the 
noninvertibility. While the sensitive dependence on 
initial conditions stretches any small initial displace
ment by an average stretching factor resulting in an 
exponential increase in the displacement, the non
invertibility helps the mapping to remain bounded 
in the interval. The process of confinement is exactly 
analogous to that in tbe quadratic map which is dis
cussed in detail by Berge et a!. [18 J. I n fact, they 
show that noninvertibility is essential for a mapping 
ofR into R to be capable of engendering chaos. It then 
turns out that this fundamental property does play 
a role along with the sensitive dependence on initial 
conditions in the formation of strange attractors in 
our map, making the existence of a direct relation
ship connecting the fraetal dimension and the LEs, 
such as the one conjectured by Kaplan and Yorke, 
impossible. It is also worth noting tbat the conjec
ture has been shown to hold only for those maps for 
which the phase space volume cpntracts after each 
iteration (2/ (1, < 0) and the contraction is, in fact, 
uniform everywhere [19,10 J . 

s. Discussion 

It is well known that first order nonlinear differ
ence equations such as the logistic map arise natu
rally in several areas ranging from mathematical eco
nomics to population biology [20]. There are of 
course numerous instances where the dynamics of a 
complex system is intrinsically multidimensional, in 
the sense that more than one dynamical variable is 
needed for a complete specification of the state of 
the system. This is why the studies on various kinds 
of coupled and modulated maps [21-24] have been 
gaining more and more interest recently. We have 
analysed two coupled first order difference equa
tions of the logistic type which are confined to the 
unit square. The map shows many interesting prop
erties wbich are typical of low dimensional chaotic 
systems. The existence of strange attractors having 
dimension > 1 indicates that the model may be use
ful in studying certain currently interesting chaotic 
phenomena. 

It is worth mentioning that the importance of time 
evolutions with "adiabatically fluctuating parame
ters (AFPs)" has recently been stressed by RucHe 
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[25]. He suggests that the evolution of the param
eter may itself be determined by a dynamical system, 
as in our model. But instead of assuming a slow vari
ation for 1 compared to X, we choose the same time 
scale for X and 1. It is also interesting to Dote that 
the same model with JJ-l has been discussed before 
by Tomita [26], even though in a different context. 
He used the system as an example of unilateral cha
otic modulation to show that the degree of chaos can 
be reduced by an appropriate modulation or coupling. 

Before concluding, we wish to make a special com
ment regarding the existence of Feigenbaum's uni
versal properties in our map. This result implies that 
an important factor for the realisation of universal 
scaling properties is the confmement of the dynam
ics to an interval, be it in R or in R2. As we know, 
the infinite sequences of period-doubling bifurca
tions with Feigenbaum scaling have been experi
mentally observed in several higher dimensional 
chaotic systems [27,28]. A standard example is the 
Lorenz model [9] where it is assumed that the so
lutions of the system, which are identified as the tra
jectories in phase space, are uniformly bounded as 
1-+00. That is, there is a bounded region such that 
every trajectory ultimately remains with it, analo
gous to the dynamics in our model. This shows that 
our result may well be a key in understanding why 
the universal sc:aling properties exist in such bounded 
or "closed flo ..... syStems. 
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