
QRS axis based classification of electrode interchange in
wearable ECG devices

Rahul Krishnan
Amrita Center for Wireless Networks and

Applications
Amrita Vishwa Vidyapeetham

Kerala, India
rahulkrishnan@am.amrita.edu

Maneesha Vinodini Ramesh
Amrita Center for Wireless Networks and

Applications
Amrita Vishwa Vidyapeetham

Kerala, India
maneesha@am.amrita.edu

ABSTRACT
Wearable ECG monitoring is becoming a convenient way
for patients as well as doctors, in tracking and diagnosing
heart diseases among large population in rural areas. Wear-
able ECG devices along with the smartphones are used to
capture and transmit ECG data to hospitals where medi-
cal practitioners diagnose and make suitable interventions.
ECG electrode cable misplacement poses significant chal-
lenge when untrained population is the end-user. We present
a real-time lead misplacement detection system for Mason-
Likar lead configuration to provide immediate feedback to
patients. It reduces chances of pseudo-disease diagnosis as
well as the need for technicians to confirm the validity and
quality of captured ECG data. The field test results show
that six different Mason-Likar electrode misplacement can
be detected and differentiated from a normal one with a
confidence value p=0.05.

Categories and Subject Descriptors
J.3 [LIFE AND MEDICAL SCIENCES]: Medical in-
formation systems

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Wearable ECG devices are becoming popular and rele-

vant, especially in remote health monitoring in rural areas in
developing countries. In this scenario, ECG measurements
are usually taken by primary health workers (PHW) or pa-
tients themselves and then sent for professional diagnosis to
doctors in urban hospitals.

Hede et al. [5] and many other studies have concluded
that about 2% to 3% of all ECG readings taken in clini-
cal setting suffer from lead misplacements and other human
errors. Garcia et al. [3] describes most of the lead mis-

.

placements in a clinical setting. Remote health monitoring
applications would suffer from these errors more, given the
fact that primary health workers or patients would not have
received professional training. In order to give the patients
or the PHW an instant feedback about the quality of the
recorded ECG, the signal needs to be analysed for basic de-
fects such as, zero leads, electrode contact loss, misplaced
electrodes and electrode reversal. In case of lead reversals,
providing a real-time feedback about the validity of ECG to
the patient through his smartphone would help him change
the leads and place it in the correct position. This will in
turn prevent recording incorrect ECG data, which otherwise
would only be detected by the doctor or a technician, or in
the worst case lead to a pseudo-disease diagnosis.

Figure 1: Wearable ECG device along with the
4 electrode cables connected according to Mason-
Likar placement. The smartphone shows the live
ECG data.

Such unassisted electrode placements may result in elec-
trode misplacements thereby leading to false positive dis-
ease morphologies. In case of resting ECG measurements,
many techniques exists such as those discussed in [7, 5, 2].
The wearable ECG devices use a different placement of elec-
trodes, the Mason-Likar configuration, which allows the pa-
tients to continue his activities even while the ECG is mon-
itored. This change of position of electrodes is accompanied
by characteristic changes in the ECG morphology and along
with it challenges in detecting any misplacement. A mobile
device that gathers the data from the wearable ECG device
should be able to provide instant feedback to patients, which
tells the patients to check the misplaced electrode cables. In
our knowledge, such a system is not present which is able
to differentiate six different lead misplacements including all
the four leads: LA, LL, RA and RL.

We present a QRS axis measurement based algorithm to
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Table 1: Characteristics of ECG morphology in Standard and Mason-Likar lead placement.
Placement RA-RL LA-RL Dual

Standard ECG II = 0,−I III = 0, aV R ≈ −II I = 0,−III, aV F ≈ III
ML ECG −I aV R ≈ −II −III, aV F ≈ III

detect and differentiate lead misplacements. Using this al-
gorithm, the mobile device will be able to provide immediate
feedback to patients. We foresee that this will have multiple
advantages for the patients as well as doctors. It will reduce
the need for technicians and doctors to provide feedback on
the validity and quality of the captured ECG data. Also,
upon getting immediate feedback, the patients can them-
selves correct the lead misplacements. We expect that, this
will result in lesser visits to hospitals for the patients and
reduced load on technicians.

2. RELATED WORK
Batchvarov et al. [1], in their study, has analyzed all

the possible electrode misplacement along with their conse-
quence on the resulting ECG morphology. From a medical
perspective this is one of the most extensive studies. Various
methods as suggested in [6, 5, 7, 2] have been used to detect
lead misplacement automatically. Some of the techniques
include using ANN (Artifical Neural Networks), SVM (Sup-
port Vector Machine) and decision tree to train and detect
misplacement morphology. Though these techniques are ef-
fective, they are primarily designed to work with standard
ECG electrode placement. Since the wearable devices re-
quire the use of ML configuration, it is noted that it fails
in many cases, due to the inherent changes in ECG signal
brought about by ML.

Han et al.’s [4] general algorithm that detects misplace-
ment in both standard and ML ECG signals have not consid-
ered right leg electrodes. The current literature also lacks a
detailed study on the effects of right leg electrode misplace-
ment. We also present some of our observations related to
right leg electrode misplacemnt in a separate section below.

3. ML VS. STANDARD ECG
The detection of ECG electrode misplacement makes use

of the characteristic differences in morphologies when the
electrodes are reversed. The various ECG features that
shows difference include amplitude, phase and polarity. In
some cases, the lead amplitude becomes zero, in some oth-
ers QRS becomes equiphasic and in few others certain leads
show high similarity. Mason-Likar lead placement changes
these characteristic features too when compared to standard
ECG signal. In comparison, some of the evident effects are:
1) Reduction in lead I amplitude and 2) Increase in lead II
amplitude. Hence, the measurement of various parameters
used for lead change detection in standard setup is different
compared to ML system. We present our observation about
these differenced in Table 1.

It may be noted that there are not many changes in case
of LA-LL, RA-LL and LA-RA. The differences are more pro-
nounced when RL is involved in the interchange. In standard
lead placement, lead I, II and III are zero potential in case
of Dual, RA-RL and LA-RL interchange respectively. But
these signs are absent in case of ML. Fig 2 shows leads I, II,
III of ML ECG signal having RA-RL interchange.

Figure 2: Leads I, II and III when RA and RL are
interchanged. In standard lead placement, lead II
should be zero potential, while in ML, it is having
high amplitude.

4. SYSTEM
We use a 3 lead (4 electrode) wearable ECG device, de-

veloped by our research group, to capture ambulatory ECG
from patients. Electrode cables are placed according to the
Mason-Likar placements, i.e., arm electrodes (RA and LA)
at the infraclavicular fossae and the leg electrodes (RL and
LL) on the lower abdomen. This is aimed at recording the
ECG even while the patients are involved in any activity.
Fig 1 shows a subject with ECG device worn as a belt and
the 4 electrodes placed on the torso using contact electrodes.
The wearable is connected to a mobile device over bluetooth
which runs an Android app. This app can automatically
trigger the wearable to start and stop the capture at regular
intervals, or when the patient is ready for the capture. The
captured ECG signal is then automatically sent to a hospital
server over data network, where a doctor can later analyze
the signal and provide necessary feedback to the patient, if
required. The lead misplacement algorithm runs on the An-
droid smartphone and interfaces with the wearable device.
In case of detection, the phone would initiate an alert to the
patient, before sending the data to the hospitals. In this
study, we consider six major electrode misplacements: LA-
LL, RA-LL, LA-RA, RA-RL, LA-RL and Dual (LA-LL and
RA-RL together) and their detection possibility from QRS
axis measurement.

5. METHOD

5.1 Data Collection
We obtained ECG data from 7 healthy subjects in the age

group of 23-37 with no history of heart diseases. Readings
were taken by placing the electrodes in the correct Mason-



Table 2: QRS axis measurement: normal and six different electrode misplacements.
QRS Axis Normal LA-LL RA-LL LA-RA RA-RL LA-RL Dual

Avg 75.1 24.1 147.6 105.5 123.9 55.7 53.5
(±Sn ∗ t) (±1.4) (±5.5) (±5.1) (±2.2) (±10.2) (±5.8) (±9.8)

Likar configuration for 20s. An electrode reversal will have
time indepedent effect on the ECG morphology and hence
20s of data is sufficient for analysis. The Android app, inter-
faced with the wearable device captured and stored the data.
The electrodes were then manually misplaced, one at a time
and the procedure repeated for all the six different lead mis-
placements that we consider here. The stored data was later
analyzed using Octave. Since the wearable device provided
only lead I and lead II data, we derived other leads from the
available ones using mathematical transformations. The av-
erage of ten R peak amplitudes of lead I and aVF was used
to calculate the QRS axis. The QRS axis measurements
for all the seven readings, 1 normal and 6 misplaced elec-
trode configuration was compiled and analyzed for all the 7
subjects. Table 2 summarizes the data.

5.2 Analysis
QRS axis for different lead configurations is shown in

Fig 3. Each bar represents standard error of means (SEM)
with p=0.05 (Average ±Sn∗ t). QRS axis of normal ECG is
75.079 (±1.38) and is statistically different from all other
lead misplacement configurations. It may be noted that
there is significant difference between LA-LL, RA-LL, LA-
RA and RA-RL. Therefore, these four misplacements can be
differentiated between themselves and also from the normal
placement. RA-LL, LA-RA and RA-RL showed significant
right axis deviation too. The QRS axis for LA-RL and Dual
are 55.66 (±5.81) and 53.46 (±9.81) respectively. Though
these two can be differentiated from correct placement, there
is overlap between their values, and hence we could not cat-
egorize whether the electrode misplacement is due to LA-RL
or Dual. Hence, we have six categories for classifying any
given ML ECG signal based on QRS axis.

6. ALGORITHM
Based on these results, we propose a QRS axis based clas-

sification algorithm. The ECG signal from the wearable
device is transmitted to the mobile device over bluetooth.
This signal is filtered using a high pass, low pass and notch
filter to denoise the signal and remove baseline wandering.
The filtered data consists of lead I and lead II data. Other
four leads (III, aVR, aVL and aVF) are then derived from
the available data. The average of ten R peaks each in lead I
and aVF is used to calculate QRS axis. The R peaks are de-
tected using a dynamic thresholding function. Based on the
calculated QRS axis, we could classify the lead misplace-
ments into six categories: Normal (75.1 (±1.4)) , LA-LL
(24.1 (±5.5)), RA-LL (147.6 (±5.1)), LA-RA (105.5 (±2.2)),
RA-RL (123.9 (±10.2)), LA-RL or Dual (53.5 (±9.8)). The
last two could not be differentiated and hence part of the
same category. Our team is currently implementing this al-
gorithm in Android smartphone for larger field trial.

7. CONCLUSION
The use of QRS axis as a measurement to detect and clas-

sify electrode misplacements in Mason-Likar configuration

Figure 3: QRS axis measurement for normal and
6 electrode misplacements. The bars are based on
SEM (p=0.05, N=7).

shows promising results. Currently, the proposed smart-
phone based analysis and lead misplacement detection sys-
tem can classify 6 different lead misplacements in ML config-
uration and provide instant feedback to patients. We have
also presented our observations on the effect of ML place-
ments on ECG morphology which shows that there is sig-
nificant deviation from the standard resting ECG readings.
Coupled with these two, we expect that further research in
the direction of feedback systems for cardiac patients will
help expand the use of wearable health monitoring devices
in rural areas.

8. FUTURE WORK
Further research needs to be done to analyze the correla-

tion between ECG morphologies in lead misplacements and
disease conditions. This might require a larger study group,
including healthy and non-healthy high risk cardiac patients.
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