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Abstract. We present an intelligent data management framework that
can facilitate development of highly scalable and mobile healthcare appli-
cations for remote monitoring of patients. This is achieved through the
use of a global log data abstraction that leverages the storage and
processing capabilities of the edge devices and the cloud in a seam-
less manner. In existing log based storage systems, data is read as fixed
size chunks from the cloud to enhance performance. However, in health-
care applications, where the data access pattern of the end users differ
widely, this approach leads to unnecessary storage and cost overheads.
To overcome these, we propose dynamic log chunking. The experimen-
tal results, comparing existing fixed chunking against the H-Plane model,
show 13 %—19 % savings in network bandwidth as well as cost while fetch-
ing the data from the cloud.

Keywords: Cloud computing - Healthcare IoT framework - Log storage
system

1 Introduction

Remote monitoring of patients through the use of wearable sensors and smart-
phones is becoming an effective tool for quality healthcare delivery. If scaled up,
it can reduce the load on hospitals as well as the need for patients to visit the
hospitals multiple times.

Technologies such as low cost body attached sensors, powerful smartphones
which can act as Internet of Things (IoT) gateways for these sensors, cheap
and easily deployable cloud solutions and many other innovations have become
enablers for remote monitoring applications. Most of the current applications
leverage cloud for storage and analytics of data. The cloud also acts as an entity,
which helps the globally distributed and highly mobile IoT devices to intercon-
nect. However, as the edge devices (such as IoT gateways and smartphones) are
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becoming powerful, the cloud is also moving closer to the edge as discussed in [1].
This has helped to build IoT infrastructure which delivers low latency response
for applications and reduce network cost of sending large amount of unfiltered
data to the cloud.

Based on these developments, we present a 3-tier architecture for remote
healthcare applications. We call this architecture as H-Plane, which stands for
Healthcare-Plane. It consists of a modified log abstraction for data management
that can facilitate location unaware routing and scalable storage. We also present
a user access pattern based log prefetch model that can highly improve the
efficiency of data reads from the cloud, compared to other systems such as Bolt
[2] and Global Data Plane (GDP) [3].

In H-Plane, the log is the fundamental storage abstraction for transferring
and managing data. The logs are divided into segments and distributed across
different nodes to meet quality of service (QoS) needs. Even though the logs are
divided into segments and distributed, the applications have a single logical view
of Log. The segments are again divided into logical chunks. A chunk constitutes a
contiguous sequence of records and it is the basic unit of data access. Accessing
data from the cloud as chunks helps to prefetch data, which in turn reduces
the number of requests and round trip delay [2]. However, the method of fixed
size chunking in GDP, Bolt and other log based systems, leads to unnecessary
storage and cost overheads due to unused prefetch data. In order to overcome
this, we present a method for dynamic chunking of the logs based on the user
access patterns.

The rest of the paper is arranged in the following way. Section 2 describes
the background and related work. The H-Plane architecture, log data abstrac-
tion and different log operations are discussed in Sect.3. We introduce dynamic
chunking models in Sect. 4, followed by the evaluation and cost benefits in Sect. 5.
The future direction of the research and conlusion is presented in Sect. 6.

2 Related Work

Earlier IoT and cloud architectures as summarized in [4-6] considered the IoT
devices connected to each other through the cloud. As the edge devices gained
more capabilities, the concepts such as Fog computing [1] gained prominence,
which enabled the use of edge devices as storage and processing nodes. As IoT
and cloud infrastructures are increasingly used for various applications, scalabil-
ity becomes a big factor. It is argued in the work of Zhang et al. [3] that the current
architecture would not scale to the needs of future applications and hence a data
level abstraction, including a log data structure was suggested. The need for a log
based storage for numeric time series data such as EEG and ECG is also well stud-
ied by Shafer et al. [7]. One of the research work by Gupta et al. [2] leveraged these
ideas and implemented the same for connected home devices. Global Data Plane
[3] was proposed to overcome the challenges in Bolt [2]. It utilizes the data man-
agement capabilities of Bolt such as time-series append-only log, chunking of logs
for performance, policy-based storage, data confidentiality and integrity. In order
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to meet the scalability needs, they have used OceanStore [8], which is a highly
scalable distributed storage system. To provide location independent routing, con-
cepts from Named Data Network (NDN) [9] were also incorporated in GDP. Since
this is a new concept, we do not know of any applications that have used or tested
this framework. Our previous experience [10] with remote monitoring healthcare
applications provided the impetus to adapt GDP like architectures for healthcare
applications. We feel that it is going to highly simplify the application develop-
ment and at the same time ensure data integrity.

Many of the existing healthcare applications have been using various cloud
and IoT architectures. As the ground realities are changing, the applications
need to move towards a more scalable architecture, that is both secure and at
the same time ensures certain QoS that are specific to healthcare applications.
In this paper, we have enhanced the data management capabilities of healthcare
applications using H-Plane. Though it is only in the early stages of conceptual-
ization, we have built upon GDP to design H-Plane as a framework for deploying
healthcare applications.

3 H-Plane

3.1 Architecture

In this section, we describe the architecture for H-plane and explain how we
have tailored data management for healthcare applications. We consider an
extended cloud architecture where there are various body sensors connected to
the patient. Usually, these sensors send the data to an IoT gateway, which could
be the patient’s smartphone or another kind of high-end device. These high-
end devices have the capability to perform minimal computation and real-time
processing. There could be multiple high-end devices which are in the neighbour-
hood. These high-end devices could have varying capabilities and could be linked
over a heterogeneous network, such as WiFi or Bluetooth. It may be noted that
the patient’s high-end device could also be connected to another patient’s device
or to a health service personnel (HSP), such as that of a doctor or a clinician.
The high-end devices are connected to the cloud (private or public) over different
media and networks. The cloud has higher capabilities for batch processing as
well as large storage space for long term archival of data. The public and private
parts of the cloud are also connected through proper interfaces. In the following
part of the paper, the sensors, the devices and the cloud are referred to as nodes
in general. This is depicted in Fig. 1.

Here, the edge devices can communicate with each other and share their
processing and storage capabilities, independent of the cloud. The patient’s data
could be routed to the doctors high-end device skipping the cloud, thereby reduc-
ing the upstream traffic to the cloud. The data archival in the cloud could be
done at a later time when the cost of transmission is less. This architecture allows
the high-end devices to go offline from the cloud and then join in later through a
different network. The connectivity of the devices and location unaware routing
are managed using NDN [9].
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Fig. 1. The H-plane architecture.

Figure 1 also shows a global logical log, which has multiple physical log seg-
ments that are located in different nodes. A detailed discussion on logs, chunks,
segments and log operations follows in the next section.

3.2 Logs

In H-Plane, a single-writer append-only log is the basic storage abstraction for
the healthcare applications. The application gets a single logical view of the log,
although it is physically divided into different segments. These segments could be
placed at different nodes (cloud, gateways etc.) in the infrastructure to meet vari-
ous Quality of Service (QoS) requirements as shown in Fig. 2(b). In a log, only the
head segment is mutable and all other segments are immutable. The segments are

Log Stream

Patient Node Cloud Node = HSP Node

Legend:

D Chunks |:|Log segment D Node

—— Storage pointer ...+ » Log linker

Fig. 2. The H-Plane log abstraction. (a) Data is written to the head of a log segment.
(b) Log segments are placed in a distributed manner across different nodes.
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divided into different logical chunks. A chunk is the basic unit of data access in our
infrastructure and helps in batching data during a read operations which improves
the system performance. In the below discussion on logs and log operations, we
assume constant chunk size for the sake of clarity. We introduce the concept of
dynamically deciding the chunk size based on the readers access pattern, and is
explained in a later section. The healthcare applications can use this log abstrac-
tion to store and move data between different nodes. H-Plane provides few basic
operations to enable applications to effectively use log data structure. These may
be further extended based on future needs.

3.3 Log Operations

We define a set of basic log operations that can be used by the applications using
API function calls to the H-Plane.

— Log Creation. An application can create a new log by calling the following
APIT functions:
create (user_id, sensor_id=none, sensor_type=none, segment_size=default)
Using the above, a new log stream is created and a locally generated log-id
is returned. The log_id is a unique identifier assigned to a log from a 256-
bit address space. The details of the newly created log is then sent to the
metadata server. The segment_size can either default to a preset value or
could be assigned according to the type of sensor used. This flexibility would
allow in optimizing performance of the log management for different kinds of
Sensors.

— Log Write. The medical data received from the sensors are appended into a

log in the form of data record; a time-tag-value pair, which may be changed
according to the requirements of the application. The append() API function
is provided to write data to the log. This API function is initiated with the
following parameters:
append (log-id, value, tag, timestamp)
The append operation identifies the mutable segment corresponding to the log
and then adds the new data record to its head. Once the append operation is
complete, it returns the file offset of the data record. The offset is added to
the segment’s chunk index which is stored along with the segment.

— Log Read. A single log has multiple readers, which enables data sharing
amongst different applications or users. A user is able to retrieve the data
within a particular timeframe using the read API function. It has the following
parameters:
read (patient_id, log_id, start_time, end_time)

To retrieve data record from the log for a specific time window, the appli-
cation identifies the location of the segments, which is stored in the segment
index (Segmentldx) in the metadata server. It has the details such as the loca-
tion, segment_id and time_window. After identifying the segment location, it
downloads the corresponding chunk index (ChunkIdx) from the remote device
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that has the segment. The chunk index contains entry for each data item in
the segment. The application queries the chunk index locally to identify the
offsets related to the chunk. It then sends a request to the remote device for
the chunk and retrieves the data.

We present a special use case that makes use of logs extensively. Suppose
a user, such as an HSP or patient needs to retrieve a part of the data. The
application can request for log chunks, either from the same log stream or
from different log streams. For example, if the doctors want to see all the sen-
sor readings from a patient during a time frame, then the system can retrieve
the log chunks from different sensors, which have those timestamps. Another
utility is that we can create a critical log stream, that contains only the log
chunks which are flagged as critical. This will help in better management of
critical data across the cloud infrastructure.

— Log Subscribe. The users can subscribe to a log stream to get instant updates

from a particular IoT device. When an application calls a subscribe API, the
corresponding user id is added to the subscribers list associated with a log
stream, which resides in the metadata server. This list is updated when the
user moves to another location or when he switches his device. The following
parameters are passed to the subscribe API:
subscribe (log_id)
Once a user is added to the subscriber’s list, the mutable segment of the log
is asynchronously replicated to the node associated with the user. A cloud
backup node can be made, by default, a subscriber to all the log streams.
If a subscriber node goes offline, the data from the source node need to be
temporarily stored and sent at a later time, when the node restores the net-
work connection. This storage may be done locally or in the cloud or in the
neighbouring nodes.

— Log Replication. The reliability and availability of medical data is of utmost

priority. Hence, we can make use of the storage capabilities of the neighbouring
nodes as well as the cloud, viewing them as a shared storage space. A log
segment can be replicated by using the following API call:
replicate (log_id, segment_id)
This will inturn send the segment to all the subscribers as well as the neigh-
bouring nodes. The number of neighbouring nodes, time of replication and
medium selection are all chosen by the application according to the data man-
agement policy as well as the user preferences. In case of replicating a mutable
segment, the application will need to send the data records to the subscribers
and neighbouring nodes as and when the data is written.

As seen above, the log abstraction model forces the applications to access the
data as chunks. Since the log data is time series in nature and the users generally
tend to access near by data, chunking is an effective method to prefetch data
from the cloud. However, in most of the healthcare applications, the end users are
of different categories. For instance, the doctors, technicians, clinical assistants
and patients access the log in different ways. Also, the temporal variability in
access patterns can also be seen even among the same user group. Suppose the
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doctor requests a one minute ECG data for a particular patient. The downloaded
chunk contains two minutes of extra data which may not be accessed later. It
would be inefficient in downloading that chunk into his smartphone. However, in
case of a technician, he might use all the three minutes of data. Thus, a constant
chunk size leads to inefficient prefetch of data from the cloud, resulting in cost
and bandwidth overheads.

We identified that the log writer cannot decide the chunking size since the
log reader preferences are varying even on the same segment of data. In order
to overcome this challenge, we propose a dynamic log chunking model based on
the reader access pattern.

4 Dynamic Log Chunking Model

In this section, we elaborate our approach towards chunking the log segment
based on user or reader access patterns. As shown in the Fig. 3, a log chunk,
requested by a reader, consists of two parts: requested data - Rg;.. (data that
is requested for current use by the reader) and extra data - R.q (data that is
prefetched along with the requested data). Extra data can be classified as unused
data - D, (extra data that is not used by the reader for succeeding requests
even though it is stored locally) and used data - D,, (extra data that is used in
the succeeding requests). Our aim is to reduce the unused data by dynamically
deciding the chunk size for each reader based on access pattern. In order to
achieve this, we analyze the amount of D,, and D, for each chunk request.
The relationship between D,,, and D, is a direct measure of the readers access
pattern, and hence we can change the chunk size Cj;.., for the next request
based on these. Suppose C™__ is the current chunk size and C"*! is the chunk

S1ze size
size for the (n 4 1)*" request, then we formulate it as:

crtl=cr., - DL, if DI, >0. (1)
C;':el Cl..+axDy, if DI =0andD] > 0. (2)
Cotl =Che+B* R, if Dy, =0and D} =0. 3)
n
. R'” - A D"u' ‘ ID"'un )
Rned
. — ,

size

Fig. 3. Representation of a log chunk showing the requested, extra, used and unused
data sizes.
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Equation (1) is used when there is unused data in the current chunk and it
effectively reduces the unused data from the succeeding chunk size. Equation ( 2)
is used when there is no unused data in the current request. This implies that
all the prefetch data was useful. Hence, we can slowly increase the prefetch size
by using a growth rate c. The value of « is decided by the application to control
the growth rate of chunk size. Equation (3) is used when both the used and the
unused data in the chunk is zero. It means that the request size was equal to
the chunk size, thereby leaving no space for any prefetch data. Hence, we can
increase the chunk size by a factor g of the current request size. Once again, the
value of (§ is decided by the application based on how it wants to control the
growth rate of chunks. The update of the chunk size could be done after each
request or after multiple requests. In H-Plane we have used two different models
to update the chunk size.

— Dynamic Chunking 1 (DC 1). The Egs. (1) to (3) are applied based on
the average of Dy, D, and R, over n requests. Accordingly a new chunk
size Cy;,e 18 calculated and used for the next n requests.

— Dynamic Chunking 2 (DC 2). Cy;,. is calculated after each request but
not updated until a predefined number of requests, n, are completed. The
average of Cj;,. over n requests is calculated and then used as the new chunk
size for the next n requests.

The frequency of updation of chunk size must be based on the frequency of
reader access. If the logs are accessed with high frequency, then we can learn for
larger number of requests and then use that. On the other hand, if the reader
accesses the logs less frequently, then we may use those few access history to
learn and calculate the new chunk size. In both cases, the goal is to learn and
calculate new chunk sizes faster. This also implies that the frequency of changing
chunk sizes is inversely proportional to the frequency of read requests. Hence,
we formulate the update frequency parameterized by the frequency of requests
and is written as follows:

n=7vxf. (4)

In Eq. (4), n is the number of requests to be used for learning the new chunk
size. The value of 7 is used to control the update frequency, and it is up to the
application to decide. The frequency of requests on that log from a particular
reader is represented by f, whose unit is in requests per day. Using this equation,
the application can find out the frequency at which the chunk sizes should be
updated as well as the number of read requests to calculate the new chunk sizes.

To implement the above said dynamic chunking model, we propose modifi-
cations to the data read/write operations and the chunk indexing methodology.
The data write should be done at the record level, while the data read at the
chunk level. Once a complete segment is written and made immutable, an associ-
ated chunk index is created which contains the timestamp and the corresponding
offset for each data record. This implies that the chunk index will contain as many
entries as the number of data records in that segment. When a reader requests
for data from a segment, the application downloads this chunk index locally on
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that device. For every request of size Rg;.., the corresponding offsets are iden-
tified from the chunk index. Based on the current chunk size Cj;.., the prefetch
size is calculated and an offset is identified accordingly. The final request will
thus have the requested data as well as the prefetch data size added together.
The remote device, which has the segment, will retrieve the data according to
the Cy;.e and send it back. It may be noted that for the first read request on a
log, a default chunk size may be used.

5 Evaluation

To evaluate the performance of the proposed model, we compared the D,,, that
gets downloaded while using dynamic chunking versus fixed size chunking mod-
els. We used 384 KB for fixed chunk size. This is equivalent to about two minutes
of standard 3-channel ECG data. The request sizes Rg;.. was picked up from
normally distributed data request sizes, with mean as 230 KB and standard
deviation of 40 KB. The used prefetch data D, also varied with a mean of 60 %
of the extra data R.q and standard deviation of 10 %. A total of 100 requests,
totalling to around 35 MB of data (equivalent to four hours of three channel
ECG data) were considered for the evaluation.

The frequency of updation of chunk size, for dynamic chunking, was fixed at
n = 10. This was done based on a sample usage scenario. Suppose there are 100
request/day, we considered v = 0.1. Hence, the latest ten requests are used to
calculate the log chunk size. After every ten requests, the chunk size was updated
based on both the updation methodologies listed in the above section. The values
used for the growth rate o was 0.3 and that of 3 was 0.1. Though we experi-
mented with these values, different values of «, 5 and « could be used based on
the application requirements. Figure 4 shows Ry, D,, and D,,, as a percentage of
the chunk size while using the fixed chunking method and two approaches of the
dynamic chunking model. In both models the chunk size was updated after every

Il R-ed [ D-u D-un

50
L
N

[ 375
=
c
3
£
o

s 25
Q
oD
£
L3

e 125
o
o

0

Fixed Chunk Size Dynamic C 1 Dynamic C 2
Chunking Method

Fig. 4. Comparison of percentage of used data, unused data, and the extra data while
using dynamic chunking and fixed chunking models.
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10 requests. On an average about 15 % of all the chunk data that is prefetched is
not getting used in subsequent requests (as expected according to our mathemat-
ical modelling of used data sizes). However, in such cases, the dynamic chunking
method 1 decreases the unused data to less than 5 %. Along with this decrease, a
slight decrease in the used data is also seen. Using the second dynamic chunking
model, the unused data percentage stays at 6 % while the used data percentage
is same as that of the fixed chunking method. This reduction in the unused data
without affecting the percentage of used prefetch data is considerable and can lead
to savings in both costs and bandwidth for the service providers as well as the end
user.

5.1 Benefits

Bandwidth Benefits. We notice that on an average about 15 % of all the chunk
data that is prefetched is not getting used in subsequent requests (as expected
according to our mathematical modelling of used data sizes). However, in such
cases, when we use the dynamic chunking method 1, the unused data percentage
decreases to less than 5 %. Along with this decrease, a slight decrease in the used
data is also seen. Using the second dynamic chunking model, the unused data
percentage stays at 6 % while the used data percentage is same as that of the
fixed chunking method. This reduction in the unused data without affecting the
percentage of used prefetch data is considerable and can lead to savings in both
costs and bandwidth for the service providers as well as the end user. The fact
that DC 2 has relatively higher D, also suggests that the reduction in chunk
size has not reduced the used prefetch data in absolute terms.

Cost Benefits. The reduction of unused prefetch data also reduces the overall
data download and upload requirements, both at the cloud as well as at the end
user nodes. Table 1 compares the data downloaded from 100 requests for fixed
and dynamic chunking models, given the same request size. DC 1 gives around
20 % savings while DC 2 saves around 14 % in comparison to fixed chunking.
These data saving translates to similar cost savings too. For instance, an
application provider using the Amazon S3 for data storage would be charged
around $0.09/GB for outbound data bandwidth for up to 1TB per month.
A reduction of 14% in out-bound traffic would result in savings of $126 per
month. On the other hand, for the end user who uses mobile data for access-
ing patient data, a savings of 14 % translates to around $10/GB. Apart from

Table 1. Data usage comparison (in KB) using dynamic chunking and fixed chunking

Rsize | Red Total data | Savings %
Fixed chunk 22,546 | 15,854 | 38,400 -
Dynamic chunking 1 22,546 | 8,304 30,850 19.7
Dynamic chunking 2 | 22,546 | 10,584 | 33,130 13.7
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the cost perspective, the dynamic chunking could result in much efficient use of
bandwidth across the entire IoT infrastructure as well.

6 Conclusion and Future Work

The H-Plane architecture for remote monitoring healthcare applications pro-
vides a data centric abstraction using logs and related log operations, thereby
viewing the entire IoT infrastructure including the cloud, the edge devices and
the sensors as a single storage, processing and routing infrastructure. Our expe-
rience with using fixed chunking of logs in healthcare applications presented a
particular problem of unnecessary prefetch from the cloud and remote devices.
The proposed solution was found to improve the performance of log systems
by around 15 % translating into cost and bandwidth savings for the cloud user
as well as the end users. We envisage that the use of dynamic chunking would
be explored further in other domains as well and that other models would be
developed that could further enhance the performance.
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