
 
Abstract—According to the World Health Organization, an 

estimated 17 million people die annually due to cardiac disease, 

which accounts for 30% of the global deaths. Current studies 

on cardiac diseases indicate that 15% of the people have Left 

Anterior Hemiblock (LAHB), which ranks third after Right 

Bundle Branch Block (RBBB) and Left Bundle Branch Block 

(LBBB). To our knowledge, a reliably consistent disease 

detection and warning algorithm is not currently available for 

LAHB although various ECG morphologies can be monitored 

for real-time detection of LAHB. The objective of this research 

is to develop a real-time detection and warning of LAHB. The 

presented work describes the design of a weighted feature-

based disease classification algorithm, which can be run in a 

resource constrained mobile environment for effective real-

time diagnosis. The testing and evaluation of the algorithm 

indicates that it is able to detect LAHB with an accuracy of 
95.3% and specificity of 100%. 

I. INTRODUCTION  

Heart Disease is the single leading cause of death 

globally. Cardiovascular disease includes a group of 

disorders of the heart and blood vessels [1]. According to the 

American Heart Association, 17 million people die due to 

cardiac disease annually, and this figure is expected to grow 

to over 23.6 million by 2030. According to the survey and 

studies described in the reference paper [2], LAHB occurs in 

3% to 5% of patients after an acute heart attack. The cardiac 

death rate is 4.9% in patients with LAHB. 

Left anterior hemiblock occurs when the anterior half of 

the left bundle branch becomes defective, causing delay in 

the transmission of the signal along the upper and anterior 

part of the left ventricle [7]. 

Current diagnosis methodologies focus on the use of 

electrocardiograms (ECG) to detect cardiac diseases. Several 
algorithms have been developed to automatically detect 

various cardiac diseases based on ECG morphologies.  While 

some ECG based disease detection systems store and process 

data offline, others use remote processing techniques. 

Existing resting ECG machines provide initial diagnosis 

based on ECG morphology. However, similar algorithms 

cannot be used for real-time diagnosis in a wearable system 

due to resource constraints. Power, processing and 

transmission requirements need to be considered when 

designing real-time diagnosis and warning algorithms. 
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Here, we present our work on the development of a real-

time ECG monitoring and disease detection algorithm to 

detect LAHB for wearable ECG devices. In our system, the 

patient wears a 3 lead ECG monitoring device, which is 

connected to a smartphone over Bluetooth. The mobile 

device runs algorithms for analysis and detection of LAHB. 
Upon detection, the smartphone based warning system 

generates a warning and sends it to all the stakeholders. 

There are various approaches for analysis and diagnosis 

based on the ECG data. Some of the proven approaches [3-5] 

include the use of Support Vector Machines (SVM), 

Artificial Neural Networks (ANN) and k-nearest neighbor 

(kNN) to classify abnormal ECGs from normal ones. The 

diagnosis is usually based on standard rules for ECG 

diagnosis such as the one discussed by Becker [6]. In this 

work, we have adopted a novel method, combining multiple 

techniques for detection and classification. This method uses 

Support Vector Machines (SVM) and a weighted 

mathematical model, which is based on doctor feedback to 

increase the accuracy of diagnosis. 

II. LEFT ANTERIOR HEMIBLOCK 

Left anterior hemiblock, which is also known as left 

anterior fascicular block (LAFB), is primarily identified by 

the presence of rS complexes in inferior leads (II, III and 

aVF), which results in left axis deviation. It also introduces 

the presence of qR complexes in leads I and aVL, which 

suggests LAHB along with an inferior wall myocardial 

infarction [7]. It is also commonly associated with anterior 

wall myocardial infarction. Isolated LAHB cases are scarce. 

The occurrence of LAHB after a myocardial infarction is 

quite high. 

III. SYSTEM ARCHITECTURE 

The diagnosis platform performs real time acquisition of 

ECG using a wearable device called „Amrita Spandanam‟ 

[8], which is a low power, low weight wearable 3 channel 

ECG sensing device, developed by our research team. It is 

capable of recording up to 8000 samples per second and has 

a Bluetooth transmitter, which sends ECG data to a 

smartphone. The data obtained through the Bluetooth 

receiver is used to display, process and provide a warning 

and summary on an Android smartphone. The processing 

module performs the ECG feature extraction and LAHB 

detection. The ECG signal is preprocessed to avoid 
unwanted noises such as power line interference, baseline 

wandering and noise due to muscle movement. Also, since 

this is a wearable ambulatory device, the preprocessing 

includes motion artifact removal based on wavelet 

A Real-time Detection and Warning of Cardiovascular Disease 

LAHB for a Wearable Wireless ECG Device 

Anjali Arunan, Rahul Krishnan Pathinarupothi, and Maneesha Vinodini Ramesh 

978-1-5090-2455-1/16/$31.00 ©2016 IEEE 98



decomposition using a db2 wavelet filter. The feature 

extraction is performed on the preprocessed filtered ECG 

signal for increasing the accuracy of detection. 

The processing module includes 5 sub-modules: 1) QRS 

axis calculation, 2) QRS detection, 3) QRS duration 

calculation, 4) R peak time calculation, and 5) qR and rS 

complex detection. The decision support module uses a 

mathematical model in order to arrive at a suitable decision. 

Upon the detection of a suspected LAHB condition, it sends 
out a warning message to the patient and the doctor from the 

smartphone. Further, the recorded ECG signal is stored on a 

server for offline diagnosis. Over time, the mathematical 

model may be altered dynamically based on data analysis, 

which spans multiple patients and temporal variations in the 

specific patient data. The work presented in this paper 

primarily deals with the processing and decision support 

modules. The complete system architecture is depicted in 

Fig. 1. 

IV. METHODOLOGY 

For the detection of LAHB, many ECG morphological 

feature criteria were considered based on literature and 
doctor feedback. Table I lists the features that differentiate 

LAHB signal from a normal ECG. For the training and 

testing of the algorithm, data from Massachusetts General 

Hospital/Marquette Foundation (MGH/MF) Waveform 

Database [9] was obtained from PhysioNet [9]. This database 

includes 250 patient recordings of about one hour in length 

were examined (13 male patients and 1 female patient, aged 

50 to 80 years). ECG signals from lead I and lead II were 

obtained from the database, from which other leads were 

derived. Ten ECG datasets from MIT-BIH normal sinus 

rhythm [9] were used as the normal reference signals. 

TABLE  I.  ANALYSIS OF LAHB FEATURES 

 

QRS 

Axis 

(deg) 

QRS 

duration 

(ms) 

R peak 

time 

(ms) 

qR 

complex 

rS 

complex 

Normal -30 to 90 70 - 100 < 45 Absent Absent 

LAHB 90 100 - 120 > 45 Present Present 

 

V. ALGORITHM 

The LAHB ECG features are detected using an algorithm 

as shown in Fig. 2. Based on the result of the detection, a 

score is updated at each step. The scores are updated based 

on a predefined mathematical model, which is described in 

the next section. After the completion of ECG feature 

detection, the cumulative score is compared against a 

threshold to decide the likelihood of LAHB.   

In addition to the SVM based feature detection system, a 

mathematical model is introduced, which helps in decision 

support. Let the LAHB ECG features be denoted as X1, X2, 

X3, X4 and X5. A corresponding weight W1, W2, W3, W4 and 

W5 is assigned depending upon its prognostic significance in 

the detection of LAHB. The weights are decided based on 

the inputs from the doctors. The variables Xi and the values 

of Wi are defined as follows. 

 
 

X1 – Presence of qR complex in leads I and aVL 

X2 – QRS duration  

X3 – QRS axis 

X4 – Presence of rS complex in leads II, III and aVF 

X5 – R peak time 

 

W1 = 0.3 

W2 = 0.2 

W3 = W4 = W5 = 0.166 

 

It is to be noted that X1 and X4 take discrete values 

(1=true, 0=false), while X2, X3 and X5 are z-score 

normalized values of the corresponding ECG feature. 

Feature X1 has a greater importance in the prediction of 

LAHB, and hence the weight of X1 (denoted by W1) is 
assigned 0.3. Similarly, feature X2 has minor importance 

compared to X1, but is considered to be more important 

compared to other features, and hence its weight W2is 

assigned 0.2. The remaining features have an equal 

prognostic significance, and hence their weights are assigned 

the value 0.166. We define a utility function, U, which is 

calculated using (1), as given below. 

 

U =   (1) 

 

A threshold limit is applied to the utility function to 

decide the likelihood of LAHB. In order to find out the 

threshold, the existing LAHB and normal sinus rhythm data 
were used to calculate the corresponding utility function (U) 

values. 

VI. IMPLEMENTATION 

The algorithm was implemented and tested in Matlab 

R2013a. The algorithm was validated using the PhysioNet 

ECG database [9]. For the QRS duration calculation, the 

QRS complex was detected using the Pan-Tompkins 

algorithm. The R wave amplitude and location was 

calculated using the Pan-Tompkins algorithm and was used 

later to detect the S wave and Q wave for the QRS duration 

calculation and the R peak time calculation. The Q wave was 
detected by finding the local minimum point within the 50ms 

points from the R wave. The S wave was located by finding 

the local minimum value from the 100ms after the R wave. 

The QRS axis was calculated using the ECG signals from 

lead I and aVF. 

 
Fig. 1. System architecture showing different modules for the 

detection and warning of LAHB occurrences. 
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The qR and rS complexes were detected using an SVM 

based classifier. The SVM classifier has the advantage of 
high performance even with a smaller learning data than any 

other classifier and has a faster implementation [5]. The 

SVM classifier was implemented in Matlab using libsvm 

3.20. The SVM was trained using 18 training sets and was 

then tested using the test data while accuracy was observed. 

Table II and Table III list these observations. The utility 

function based classification was also implemented in 

Matlab, which took the inputs from the above modules and 

used the mathematical model to arrive at a decision. 

VII. EVALUATION 

For the evaluation of the algorithm, MGH/MF and MIT-
BIH database were used. The ECG signals from both the 

databases were downloaded and read using the WFDB 

toolbox for Matlab. A set of 32 ECG signals were used for 

training and testing: 14 LAHB signals from the MGH/MF 

database and 18 normal ECG signals from MIT-BIH normal 

Sinus rhythm database. We evaluated the system in three 

parts. First, the QRS measurements, including QRS axis, 

duration and R-peak time, were evaluated to identify if these 

measures can be used for an accurate classification. Second, 

we evaluated the performance of the SVM classifier for qR 

and rS detection. Finally, the utility function-based algorithm 

was evaluated to classify LAHB from the normal signals for 

different threshold values. 

By statistically comparing the normal ECG signals and 

LAHB signals, it was observed that QRS axis, QRS duration 
and R peak time alone could not be used as a classification 

criterion.  

We used an SVM classifier to differentiate LAHB signals 
having qR and rS complexes from normal signals. The 

performance of the SVM classifier was measured separately 

for qR signals and rS signals. We split the whole dataset of 

14 LAHB and 18 normal sinus rhythm data into 3 sets: A, B 

and C, each containing 7 normal and 7 LAHB signals. In 

order to classify qR, we used Lead I signals from LAHB and 

normal sinus rhythm to train and test. A threefold cross 

validation was done. The accuracy, specificity and sensitivity 

of SVM for classifying qR from normal signals are 

summarized in Table II. 

For rS complex classification, lead aVF was used from 

LAHB and normal sinus rhythm databases. Similar to the qR 

test, 7 ECG signals from LAHB and the normal database 

were used during each test. A threefold cross validation was 
performed. The results of the SVM classifier for rS detection 

are summarized in Table III. It can be noted that the average 

detection accuracy of the SVM was above 80% in both qR 

and rS signals. The specificity of the classifier was 100% in 

the former and 85% in the latter case. The utility function 

was also evaluated using the above sets A, B and C. For each 

data in the set, all the five LAHB features were measured. 

Values for X2, X3 and X5 were z-score normalized while X1 

and X4 values (0 or 1) were used to compute the U value 

according to equation (1). The computed U values were 

normalized between 0 and 1. A threshold limit T was then 
used to classify a given dataset as LAHB or normal. Table 

IV summarizes the performance of the utility function for 

three datasets with the value of T=0.5. Table V shows the 

results, when the value of T is 0.3 on the same 3 datasets. 
 

TABLE II. SVM QR COMPLEX DETECTION RESULTS USING LEAD I SIGNALS. 

 

Test Set Accuracy Specificity Sensitivity 

Set A 92.86 % 100% 83.33% 

Set B 78.57% 100% 57.14% 

Set C 85.71% 100% 66.67% 

Average 85.73% 100% 69.13% 

 

 

 
 

Fig.2. Flow chart of the algorithm for LAHB detection. 
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TABLE III. SVM RS COMPLEX DETECTION USING LEAD AVF. 

 

Test Set Accuracy Specificity Sensitivity 

Set A 78.57% 75% 80% 

Set B 92.87% 100% 83% 

Set C 71.43% 80% 50% 

Average 80.97% 85% 71% 

TABLE IV. PERFORMANCE MATRIX OF THE UTILITY FUNCTION FOR 

DIFFERENT DATASETS WITH T=0.5. 

Utility function performance matrix (T = 0.5) 

 
Accuracy Sensitivity Specificity 

Set A 93% 86% 100% 

Set B 100% 100% 100% 

Set C 93% 86% 100% 

Average 95.3% 90.7% 100% 

TABLE V. PERFORMANCE MATRIX OF THE UTILITY FUNCTION FOR 

DIFFERENT DATASETS WITH T=0.3. 

Utility function performance matrix (T = 0.3) 

 

Accuracy Sensitivity Specificity 

Set A 93% 100% 86% 

Set B 93% 100% 86% 

Set C 86% 100% 71% 

Average 90.7% 100% 81% 

 

On an average, the utility function had an accuracy of 

95.3%, sensitivity of 90.7% and specificity of 100%, when 

the threshold was 0.5.  At T=0.3, though the sensitivity was 

100%, the specificity reduced to 81%. In case of disease 

detection, since the aim is to minimize false positives, T = 

0.5 was considered to be the optimum threshold value. Our 
team is currently implementing and testing this algorithm on 

Smartphones. 

VIII. CONCLUSION AND FUTURE WORK 

A design and implementation of the algorithm to detect 

and warn about left anterior hemiblock is proposed and 

evaluated here. We may conclude that a combination of the 

QRS parameter calculation, the SVM based qR and rS 

detection, and the utility function based on the weight of 

ECG features can be used in order to efficiently classify 

LAHB from the normal ECGs. The results from the present 

work are quite encouraging. We hope to develop suitable 
real-time algorithms for detection of other cardiovascular 

diseases as well. We also plan to conduct a large field trial 

in order to evaluate the efficacy of the current algorithm, 

when run in a mobile resource constrained environment. 
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