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A Note on Determination of Sample Size 
from the Perspective of Six Sigma Quality 

Joghee Ravichandran 
Amrita Vishwa Vidyapeetham, Amrita University 

Coimbatore, India 

 

 
In most empirical studies (clinical, network modeling, and survey-based and aeronautical 
studies, etc.), sample observations are drawn from population to analyze and draw 
inferences about the population. Such analysis is done with reference to a measurable 
quality characteristic of a product or process of interest. However, fixing a sample size is 

an important task that has to be decided by the experimenter. One of the means in 
deciding an appropriate sample size is the fixation of error limit and the associated 
confidence level. This implies that the analysis based on the sample used must guarantee 
the prefixed error and confidence level. Although there are methods to determine the 
sample size, the most commonly used method requires the known population standard 
deviation, the preset error and the confidence level. Nevertheless, such methods cannot 
be used when the population standard deviation is unknown. Because the sample size is 

to be determined, the experimenter has no clue to obtain an estimate of the unknown 
population standard deviation. A new approach is proposed to determine sample size 
using the population standard deviation estimated from the product or process 
specification from the perspective of Six Sigma quality with a goal of 3.4 defects per 
million opportunities (DPMO). The aspects of quality improvement through variance 
reduction are also presented. The method is effectively described for its use and is 
illustrated with examples. 

 
Keywords: Coefficient of variation, DPMO, error, confidence level, sample size, Six 
Sigma quality, stopping criteria 

 

Introduction 

In most empirical studies, sample observations are often used to analyze and draw 

inferences about the population. Though a larger sample size results in better 

conclusions, the choice of sample size is very important for such studies. This is 

due to the fact that a larger sample size may require too much time, resources, and 

cost and, at the same time, a smaller sample size may lead to inaccurate inferential 

https://doi.org/10.22237/jmasm/1493597700
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results. Therefore, in practice, before the choice of sample size, the aspects of 

time, resources, and cost have to be taken into consideration in addition to 

sufficient statistical power. An experimenter also prefers to fix a sample size 

without much compromise on the two types of errors. The problem of sample size 

determination is quite common in the research areas such as clinical trials (Ando 

et al., 2015), network modeling (Krivitsky & Kolaczyk, 2015), and aeronautical 

studies (Suárez-Warden, Rodriguez, Hendrichs, García-Lumbreras, & Mendívil, 

2015). 

In order to know how large a sample size must be fixed, a number of factors 

may be considered by both statisticians and researchers. Sometimes, it depends on 

the nature of study of interest. That is, the study may be survey-based to find out 

the proportion of something, or may be to estimate the population mean, standard 

deviation, correlation coefficient, regression coefficients, etc. So, given the nature 

of a study, “how to conclude if the sample size used is enough and is the right 

representation of the population?” is the most commonly raised question. 

From a normal population whose mean is, say, μ and standard deviation is, 

say, σ, a number of samples may be collected, from which respective sample 

means, say (X̅1, X̅2,…, X̅i,…) can be computed. The difference between each 

sample mean and population mean can be thought of as an error. However, in 

practice and due to various reasons, an experimenter selects randomly only one 

sample of size, say, n, and computes a sample mean, say X̅. Then the difference 

|X̅ − μ| is treated as an absolute error. Apart from this, a (1 – α)100% confidence 

interval for μ can be constructed by setting 

 

  2 2P 1 100%
X

z z
n

 






 
      
 

  

 

Here α is the level of significance or the probability of Type-I error. Therefore, an 

experimenter always prefers to fix the sample size n such that the absolute error is 

kept at minimum, that is, |X̅ − μ| ≤ ε, ε > 0 with maximum confidence that can 

result from maintaining minimum Type-I error probability. Clearly, 

2z n   and hence  
2

2n z   . 

Since the population standard deviation σ is usually unknown and the 

sample standard deviation cannot be used as it needs the sample size n, there is a 

difficulty in determining the sample size n. In this paper, under the normality 

assumption, it is proposed to estimate the unknown population standard deviation 

from the specification of the quality characteristic that is under study from the 
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perspective of Six Sigma quality (SSQ), which can ensure only 3.4 defects per 

million opportunities (DPMO); refer to Ravichandran (2006). This estimated 

standard deviation is then used to determine the sample size. 

Process and product specifications play a major role in ensuring the degree 

of quality of a process or product. It may be noted that a unit of a product is said 

to be defective if it fails to meet the preset specification limits of the quality 

characteristic that is critical-to-quality. Setijono (2010) has considered the case of 

matching the SSQ limits to specification limits in order to estimate customer 

dissatisfaction (not meeting specification) and delight (meeting specification) in a 

survey related study. A similar study was done by Ravichandran (2016) from the 

perspective of process/product specification to estimate DPMO and extremely 

good parts per million opportunities (EGPMO) for higher the better and lower the 

better quality characteristics. A process or product that meets the specification 

target is always said to be stable. However, the process/product mean may move 

away from the target over a period of time. In the context of Six Sigma, this has 

prompted the practitioners to allow a shift up to ± 1.5σ (Lucas, 2002) as it can 

still produce only 3.4 DPMO. It has been argued that, though such a shift from the 

target is not acceptable to many researchers due to lack of either theoretical or 

empirical justification (Antony, 2004), there is a strong belief among the Six 

Sigma practitioners that no process can maintain on its own target in the long run. 

Therefore, the population mean and standard deviation estimated using the 

proposed method are expected to satisfy the Six Sigma goal of 3.4 DPMO. 

Sampling from Normal Population 

Let the quality characteristic X follow a normal distribution with mean μ and 

variance σ2. That is, 

 

     2E and VX X     

 

Let (x1, x2,…, xi,…, xn) be a sample of size n drawn from this population. Then 

the sample mean X̅ and sample variance S2 are given as 

 

 
1

1 n

i

i

X x
n 

    (1) 

 



SAMPLE SIZE FOR SIX SIGMA QUALITY 

282 

  
22

1

1

1

n

i

i

S x X
n 

 

   (2) 

 

It may be noted that the sample mean and variance given in (1) and (2) are the 

unbiased estimators of the mean μ and variance σ2, respectively. That is, 

 

    2 2E and EX S     

 

Because the sample mean X̅ itself can be thought of as a random variable as it can 

vary for varying samples, the mean and variance of the sample mean itself can be 

shown as μ and σ2/n. It is a proven result that the sample mean X̅ also follows the 

normal distribution with mean μ but with variance σ2/n. In general, the standard 

deviation σ/n of the sample mean X̅ is known as standard error (SE). 

Standard Normal Distribution 

It may be recalled that if the underlying distribution of the random variable X has 

mean μ and known variance σ2, then we can define a standard normal variate, say 

Z, as 

 

 or
X X

Z Z
n

 

 

 
    (3) 

 

or in general, equation (3) can be written as 

 

 
 

 

sample statistic E sample statistic

SE sample statistic
Z


   

 

which has mean 0 and variance 1. Here, E(*) represents expectation and SE(*) 

represents standard error. However, if the standard deviation σ is unknown then Z 

is observed to be not a standard normal variate. Under this circumstance, we 

replace the unknown standard deviation σ by the sample standard deviation given 

by S and construct a variable called Student’s T as 

 

 
X

T
S n


   (4) 
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which follows the Student’s T distribution with n – 1 degrees of freedom. It may 

also be noted that the Student’s T variable is defined when the sample size n is 

small. 

Error and Sample Size 

It may be noted that fixing the sample size n is a major concern in statistical 

inference problems. As discussed earlier, a large sample size, though preferred, 

may be expensive, laborious, and time-consuming, while a small sample may 

result in poor and inconsistent inferential decisions. Statistical errors – Type-I and 

Type-II errors – are also influenced by the size of the sample. Therefore, there 

needs to be a balance between these two types of error. It is preferable to choose n 

such that the size, say α, which is the probability of Type-I error and power, say 

1 – β, where β is the probability of Type-II error, are optimum and vice-versa. 

Given the Type-I error probability α, it is known that 

 

 

 

 

2 2

2

P 1 100%

P 1 100%

X
z z

n

X z
n

 









 

 
      
 

 
      

 

  (5) 

 

Here ± zα/2 can be obtained by setting P(Z < -zα/2) = P(Z > +zα/2) = α/2 with an 

assumed value of μ = μ0 (null hypothesis is true), and hence Z ~ N(0, 1). Now it is 

supposed that an experimenter would like to have the difference (error) between 

the sample mean X̅ and the unknown population mean μ to be less than or equal to 

a pre-specified negligible value, say ε (> 0), with the confidence level (1 –

 α)100%. This implies that 

 

 

2

2 2z n z
n

 

 




 
    

 
  (6) 

 

(Refer to Montgomery & Runger, 2003; Ravichandran, 2010). One way of 

choosing ε is to allow the difference between X̅ and μ as some δ (> 0) percentage 

of μ, that is ε = (δ/100)μ. Therefore we have 
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 

2 2

2 2

1
100

100
n z z 

 

   

    
      

   
  (7) 

 

Accordingly, if μ and σ are known, then for the known values of (σ/μ)100 (note 

that (σ/μ)100 gives the coefficient of variation (CV)) and for different δ values, 

the sample size can be determined by fixing α values. Table 1 shows such sample 

size values for 

 

(i) CV = (σ/μ)100 = 2.5% (2.5) 20% 

(ii) δ = 1.0, 2.5, 50 

(iii) α = 0.01, 0.05, 0.10 

 

Readers may note that, in Table 1, CV = x% and δ = y means x = σ/μ and 

y = δ/100 so that 

 

 

2

2

x
n z

y


 
  
 

  

 

Table 1 can now readily be used by the experimenters for sampling or can 

be used as a guideline for determining sample size for other combinations of 

parameters. If both Type-I and Type-II error probabilities are known, then the 

sample size n given in equation (6) can also be written as 

 

 

2

2n z z 





 
    

 
  (8) 

 

Here zβ can be obtained by setting β equal to 

   2 2P PZ z n Z z n            with an assumed mean value 

1 n      (alternative hypothesis is true) and hence  ~ N ,1Z n  . It 

is observed that the approximation in (8) holds good if  2P Z z n      is 

small ( = 0) compared to β for the sample size given in (8). Refer to Montgomery 

and Runger (2003) for more details. Therefore, P(Z < -zβ) = β implies that 

2z z n       . Following (7), we have 
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Table 1. Sample size values according to equation (7) 

 

  
Size (α) 

CV δ 0.01 0.05 0.10 

2.5 1.0 42 24 17 

 
2.5 7 4 3 

 
5.0 2 1 1 

     
5.0 1.0 166 96 68 

 
2.5 27 15 11 

 
5.0 7 4 3 

     
7.5 1.0 374 216 153 

 
2.5 60 35 25 

 
5.0 15 9 6 

     
10.0 1.0 666 384 272 

 
2.5 107 61 44 

 
5.0 27 15 11 

     
12.5 1.0 1040 600 425 

 
2.5 166 96 42 

 
5.0 42 24 17 

     
15.0 1.0 1498 864 613 

 
2.5 240 138 98 

 
5.0 60 35 25 

     
17.5 1.0 2039 1176 834 

 
2.5 326 133 82 

 
5.0 82 47 33 

     
20.0 1.0 2663 1537 1089 

 
2.5 426 246 174 

  5.0 107 61 44 

 
 

 

2

2

1
100n z z 



 

  
      

  
  (9) 

 

From Table 1, the following observations can easily be made: 

 

(i) For a fixed CV, as the error δ increases, the sample size n decreases 

meaning that smaller sample size will result in higher error and vice-

versa. 
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(ii) For a fixed CV, as the Type-I error probability α increases, the sample 

size n decreases meaning that smaller sample size will result in higher 

degree of Type-I error probability (size) and vice-versa. 

(iii) As CV increases, the sample size increases and vice-versa. This means 

that if the CV is less, then fewer sample observations are sufficient to 

achieve the error levels. 

 

If μ is zero, then it is always wise to use the formula involving ε given in 

equation (6) rather than using the formula involving δμ given in (7). Values for ε 

can be assumed to be 10-2, 10-3, 10-4, etc. If σ is unknown, S cannot be used in (6) 

or (7) since E(S) ≠ σ. But, though E(S/c4) = σ where c4 is an appropriate constant, 

one cannot use c4 and S since both of them depend on sample size n. Therefore, 

using 

 

 
 

22

4 4
, 2 , 2or

100
v v

S c S c
n t n t 

  

  
         

  (10) 

 

respectively, as replacement of (6) or (7) for sample size determination is 

erroneous. 

Stopping Criteria in Simulations 

There are situations, such as simulations, where it is important to decide when to 

stop the simulation. Under these circumstances, the simulations are run for a 

preset number n1 of times (i.e., sample of size n1) and then the sample mean X̅1, 

standard deviation S1, 
1

4c , and 
1 , 2vt   are computed for the quality characteristic of 

interest, say X. The simulation is stopped if the following condition is satisfied 

(refer to Yeap, 1998): 

 

 
 1 1

22
1 1

1 4 1 4
1 , 2 1 , 2

1

or
100

v v

S c S c
n t n t

X
 

 

  
      
   

  

 

Otherwise, collect the next observation from the next simulation so that 

n2 = n1 + 1, from which X̅2, S2, 
2

4c , and 
2 , 2vt   are computed to verify if 
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 2 2

22
2 2

2 4 2 4
2 , 2 2 , 2

2

or
100

v v

S c S c
n t n t

X
 

 

  
      
   

  

 

In general, the simulation is stopped after ni, i = 1, 2,…, simulations if 

 

 
 

22

4 4
, 2 , 2or , 1,2,

100i i

i i

i i
i v i v

i

S c S c
n t n t i

X
 

 

  
      
   

  

 

where the mean X̅i, standard deviation Si, 4

ic , and , 2ivt   are computed form the 

sample of size ni, that is after i simulations. 

A method is proposed here to estimate the unknown population standard 

deviation σ from the perspective of the concept of SSQ. This sample size can 

ensure the conformance of the process to the Six Sigma goal of 3.4 DPMO. 

Sample Size Determination based on Six Sigma Quality 

Consider a measurable quality characteristic, say X, that follows normal process 

with mean T = μ and variance σ2. Because not all values of X towards the tails of 

the distribution are acceptable, the specification of X is usually given in the form 

T ± Kσ, where T is the target or population mean, K is a positive constant, and σ 

is the population standard deviation. Notationally, X ~ N(T, σ2) and P(T –

 Kσ ≤ X ≤ T + Kσ) = 1 – αK, where αK is a prespecified probability value such that 

αK = P(X < T – Kσ) + P(X > T + Kσ). From T ± Kσ, we get half of the process 

spread as Kσ = d (say) (also refer to Lin, 2006), which implies σ = d/K and hence 

we have SS
ˆ d K   . Therefore, we have  SS SS SS

ˆ n d K n  . Now 

equation (5) becomes 

 

  2

SS

P 1 100%
K K

d K
X z

n
 

 
      

 
 

  (11) 

 

and hence equations (6) and (7) become, respectively: 

 

 

2

SS 2K

d K
n z



 
  
 

  (12) 
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Table 2. Determination of αK and 
Kα

z
2
 

 

K DPMO αK K
α

z
2

 

3.0 66810.63 0.1336210 1.50 

3.5 22750.35 0.0455010 2.00 

4.0 6209.70 0.1241900 2.50 

4.5 1349.97 0.0027000 3.00 

5.0 232.67 0.0004650 3.50 

5.5 31.69 0.0000634 4.00 

6.0 3.40 0.0000068 4.50 

 
 

and 

 

 
 

2

SS 2
100 K

d K
n z

 

 
   
 

  (13) 

 

Here, K represents the current sigma quality level (SQL) of the process. For 

example, if K = 6, then we have DPMO = 3.4 either on left tail or on right tail. 

Therefore, αK = 6.8 × 10-6 implies 2 4.50
K

z  . In (13), if μ is unknown, then the 

same can be replaced by the specification target T. 

The computation of the values of 2K
z  with different SQLs is discussed as 

follows: If the process is operating at a Three Sigma level, then we have the 

current quality level as K = 3. It may be noted that, with allowable shift, a Three 

Sigma process may result in 66810.63 DPMO. Once this level is maintained, and 

if there is a scope for improvement, the practitioner may change the value of 2K
z . 

Various DPMOs and the corresponding 2K
z  values are given as shown in Table 

2 (Harry, 1998; Lucas, 2002). Therefore, for SSQ process with 3.4 DPMO, (12) 

and (13) respectively become 

 

  
2

SS

6
4.50

d
n



 
  
 

  (14) 

 

and 
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 

 

2 2

SS SS

2

SS
SS

6 1 6
4.50 or 100 4.50

100

ˆ1
100 4.50

d d
n n

n

   



 

    
      

   

  
    

  

  (15) 

 

Shown in Table 3 are sample size values from the perspective of Three 

Sigma (3σ), Four Sigma (4σ), Five Sigma (5σ), and Six Sigma (6σ) qualities for 

the following parameter set up: 
 

(i)    SS SS
ˆCV 100 1.0, 2.5% 2.5 20%x    

(ii) δ = 1.0, 2.5, 5.0 

(iii) αK = 0.1336210, 0.1241900, 0.0004650, 0.0000068 

 

From Table 3, it can be seen that: 

 

(i) For a fixed CVSS, as the error δ increases, the sample size n decreases 

meaning that a smaller sample size will result in higher error and vice-

versa. 

(ii) For a fixed CVSS, as the sigma quality decreases (that is, as the Type-I 

error probability α increases), the sample size n decreases meaning that a 

smaller sample size will result in poor sigma quality and vice-versa. 

(iii) As CV increases the sample size increases and vice-versa. This means 

that if the CV is less, then fewer sample observations are sufficient to 

achieve the goal of SSQ of 3.4 DPMO. For example, if (d/6)/μ = 0.01 

and the error percentage is δ = 1% of μ, then an inspection of a sample 

with 20 observations is sufficient to show if the process is meeting the 

Six Sigma goal of 3.4 DPMO. 

 

Table 3 is an indicative one, and experimenters can use it as a guideline for 

determining the sample size for different parameter combinations. Looking at 

Tables 1 and 3, the values of 

 

 SS
SS

ˆ
CV 100% and CV 100%



 
    
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are assumed as same for comparison purpose. However, in practice, the variation 

indicated by 
SS̂  in the case of a Six Sigma process is usually far below the 

normal process whose variation is indicated by σ. Therefore, reduced variation in 

Six Sigma may result in a good reduction in the sample size. See example 2 in the 

following section. 
 
 
Table 3. Sample size nSS for Six Sigma quality 

 

CVSS δ 6σ 5σ 4σ 3σ 

1 1.0 20 12 6 2 

 
2.5 3 2 1 - 

 
5.0 1 - - - 

     
 

2.5 1.0 127 77 39 14 

 
2.5 20 12 6 2 

 
5.0 5 3 2 1 

     
 

5.0 1.0 506 306 156 56 

 
2.5 81 49 25 9 

 
5.0 20 12 6 2 

     
 

7.5 1.0 1139 689 352 127 

 
2.5 182 110 56 20 

 
5.0 46 28 14 5 

     
 

10.0 1.0 2025 1225 625 225 

 
2.5 324 196 100 36 

 
5.0 81 49 25 9 

     
 

12.5 1.0 3164 1914 977 352 

 
2.5 506 306 156 56 

 
5.0 127 77 39 14 

     
 

15.0 1.0 4556 2756 1406 506 

 
2.5 729 441 225 81 

 
5.0 182 110 56 20 

     
 

17.5 1.0 6202 3752 1914 689 

 
2.5 992 600 306 110 

 
5.0 248 150 77 28 

     
 

20.0 1.0 8100 4900 2500 900 

 
2.5 1296 784 400 144 

  5.0 324 196 100 36 
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Numerical Examples 

Example 1 

Yeap (1998) has given an example that the standard deviation of power samples 

measured from a circuit has been observed to have ± 20% fluctuations from the 

mean. Now the number of sample units (sample size) required to ensure that the 

experimenter is 99% confidence that the error of the sample mean is within ± 5% 

can be obtained by setting: 

 

 20% 0.2, 5% 5 100           

 

which, according to (7), gives 

 

    
2 2

2

1 1
100 0.2 100 2.58 107

5
n z



 

    
      

   
  

 

However, for the SSQ requirement of 3.4 DPMO, the sample size can be obtained 

as 

 

    
2 2

SS
SS 2

ˆ1 1
100 0.2 100 4.50 324

5K
n z



 

    
      

   
  

 

It is alarming to note that the SSQ process requires more sample observations in 

this example. This is due to the fact that the CV% is too high with σ = 20%μ, 

which is beyond expectation. However, it is presented here for illustration 

purpose to show that given this CV% and the specification of the quality 

characteristic of interest, it may require 324 sample observations to ensure that it 

is a Six Sigma process. 

Example 2 

Montgomery and Runger (2003) presented an example of vane-manufacturing 

process. The specifications on vane opening are given as 0.5030 ± 0.0010 inches. 

Let us suppose that we would like to draw a sample of size n so that the process 

average can lie around ± 0.05% of the target. Then the sample size meeting the 

SSQ requirement of 3.4 DPMO can be obtained by setting: 
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SS

ˆ0.5030, 6 0.0010 6 0.000167,

0.000361, 0.05% 0.05 100

d 

  

   

  
  

 

This, according to (15), gives 

 

   
2 2

SS
SS 2

ˆ1 1
100 0.0361 4.50 11

0.05K
n z



 

    
      

   
  

 

If it is assumed that by past experience the standard deviation of this process 

is known as 0.00025, then the required sample size can be obtained by setting: 

 

 0.5030, 0.00025, 0.000497, 0.05% 0.05 100           

 

    
2 2

2

1 1
100 0.000497 100 4.50 20

0.05
n z



 

    
      

   
  

 

It may be noted that since σ = 0.00025, the process is at the level of 4σ only with 

K = 4 (that is, 4σ = (4)(0.00025) = 0.0010 = d) and hence it requires more sample 

observations. Therefore, the process variation needs to be improved (reduced 

variation) with regard to standard deviation from σ = 0.00025 to σ = 0.000167 so 

that the process becomes a Six Sigma process with 3.4 DPMO. 

If an experimenter is interested in drawing a sample of size n so that it meets 

the Four Sigma requirement of 6209.70 DPMO, then it can be obtained by setting: 

 

 
SS

SS

ˆ0.5030, 4 0.0010 4 0.00025,

ˆ 0.000497, 0.05% 0.05 100

d 

  

   

  
  

 

    
2 2

SS
SS 2

ˆ1 1
100 0.000497 100 2.50 6

0.05K
n z



 

    
      

   
  

 

Given the process conditions, it may be noted that a meager sample of size 6 is 

sufficient to meet the error constraints under Four Sigma quality of 6209.70 

DPMO. 
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Example 3 

Consider an example of a manufacturing process of a product in which the 

specification for the dimension of the product is set as 20 ± 6. For laboratory 

testing purposes it is proposed to collect sample units of the product. The error 

limit between sample mean and the target is set as ± 5% of the target. Then the 

sample size meeting the SSQ requirement of 3.4 DPMO can be obtained by 

setting: 

 

 
SS SS

ˆ ˆ20, 6 6 6 1, 0.005, 5% 5 100d             

 

This, according to (15), gives 

 

    
2 2

SS
SS 2

ˆ1 1
100 0.05 100 4.50 20

5K
n z



 

    
      

   
  

 

This can also be verified from Table 3. Now, after drawing a sample of size 20, 

the sample standard deviation is computed as 3.63, which is an indication that the 

process is only at an SQL of 6/3.63 = 1.65 sigma. Therefore, the process variation 

needs to be improved (reduced variation) with regard to standard deviation from 

3.63 to 1 so that the process becomes a Six Sigma process with 3.4 DPMO. 

Discussions and Conclusions 

In this paper, first a discussion on the existing methods of sample size 

determination is presented. It is observed that such methods critically need the 

known population standard deviation. Therefore, a new approach is then 

presented that uses an estimate of population standard deviation from the 

perspective of the Six Sigma goal of 3.4 DPMO. The proposed method helps the 

experimenter to fix the sample size in such a way that the process either meets the 

SSQ requirement of 3.4 DPMO or can be improved towards the goal. This can be 

achieved by comparing the estimated standard deviation from the perspective of 

Six Sigma and the actual process standard deviation obtained after fixing the 

sample size. If the difference is wide, then we recommend using the stopping 

criteria approach by adding more samples until the requirements are met. 

The proposed sample size determination method is studied and evaluated 

numerically. It is observed that as the CV% increases, the method recommends a 



SAMPLE SIZE FOR SIX SIGMA QUALITY 

294 

larger sample size to cover up the higher standard deviation and vice-versa. The 

approach is also demonstrated using suitable examples. In these examples, it is 

discussed that the proposed method not only helps in determining the sample size, 

it also prompts the experimenter to look for improvement opportunities, such as 

variance reduction exercises through quality improvement programs. As a future 

study, the case of proportions instead of measurable quality characteristic will be 

considered. Also, it will be attempted to propose a method for determining a 

sample of specific size from a finite size population. 
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