
Knowledge Digest for IT Community

w
w

w
.c

si
-in

di
a.

or
g

IS
SN

 0
97

0-
64

7X

Software Engineering

SECURITY CORNER
Pseudo Code Attack in Software
Engineering 18

ARTIClE
The Role of Software Engineering 20

COvER STORY
History of Software Engineering: Status of
Software Component, Reusability and Quality 6

TECHNICAl TRENDS
Future of Software Engineering 10

RESEARCH fRONT
An Essence of Soft Computing Techniques
On Software Development Life Cycle 13

Volume No. 40 | Issue No. 12 | March 2017 ` 50/-

52 pages including cover

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

www.csi-india.org
 2

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

CSI Adhyayan
A tri-monthly publication for students

Articles are invited for Oct-Dec. 2016 issue of CSI Adhyayan from student members authored as original text. Plagiarism is
strictly prohibited. Besides, the other contents of the magazine shall be Cross word, Brain Teaser, Programming Tips, News
Items related to IT etc.
Please note that CSI Adhyayan is a magazine for student members at large and not a research journal for publishing full-
fledged research papers. Therefore, we expect articles should be written for the Bachelor and Master level students of
Computer Science and IT and other related areas. Include a brief biography of Four to Five lines, indicating CSI Membership
no., and for each author a high resolution photograph.
Please send your article to csi.adhyayan@csi-india.org.
On behalf of CSI Publication Committee

Prof. A. K. Nayak
Chief Editor

Sanjay Mohapatra, Vice President, CSI & Chairman, Conf. Committee, Email: vp@csi-india.org

Date Event Details & Contact Information

MARCH
24-25, 2017

First International Conference on “Computational Intelligence, Communications, and Business Analytics (CICBA -
2017)” at Calcutta Business School, Kolkata, India. Contact: som.cse@live.com; (M) 94754 13463 / (O) 033 24205209

International Conference on Computational Intelligence, Communications, and Business Analytics (CICBA - 2017)
at Calcutta Business School, Kolkata, India. Contact (M) 9475413463 / (O) 03324205209, Email id : som.cse@live.com;
www.cicba-2017.in

APRIL
15-16, 2017

1st International Conference on Smart Systems, Innovations & Computing (SSIC-2017) at Manipal University Jaipur,
Jaipur, Rajasthan. http://www.ssic2017.com
Contact : Mr. Ankit Mundra, Mob.: 9667604115, ankit.mundra@jaipur.manipal.edu

MAY
08-10, 2017

ICSE 2017 - International Conference on Soft Computing in Engineering, Organized by : JECRC, Jaipur, www.icsc2017.com
Contact : Prof. K. S. Raghuwanshi, hod.it@jecrc.ac.in, Mobile : 9166016670

JUNE
05-30, 2017

Workshop on LAMP (Linux, Apache, My SQL, Perl/Python) , Jaypee University of Engineering and Technology, Raghogarh,
Guna - MP, www.juet.ac.in Dr. Shishir Kumar (dr.shishir@yahoo.com) 9479772915

OCTOBER
28-29, 2017

International conference on Data Engineering and Applications-2017 (IDEA-17) at Bhopal (M.P.),
http://www.ideaconference.in Contact : conferenceidea@gmail.com

DECEMBER
21-23, 2017

Fourth International Conference on Image Information Processing (ICIIP-2017), at Jaypee University of Information
Technology (JUIT), Solan, India, (http://www.juit.ac.in/iciip_2017/) Contact : Dr. P. K. Gupta (pkgupta@ieee.org)
(O) +91-1792-239341 Prof. Vipin Tyagi (dr.vipin.tyagi@gmail.com)

C S I C A L E N D A R 2 0 1 6 - 1 7

 3
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

CSI CommunICatIonS

Please note:
CSI Communications is published by Computer
Society of India, a non-profit organization.
Views and opinions expressed in the CSI
Communications are those of individual
authors, contributors and advertisers and they
may differ from policies and official statements
of CSI. These should not be construed as legal
or professional advice. The CSI, the publisher,
the editors and the contributors are not
responsible for any decisions taken by readers
on the basis of these views and opinions.
Although every care is being taken to ensure
genuineness of the writings in this publication,
CSI Communications does not attest to the
originality of the respective authors’ content.
© 2012 CSI. All rights reserved.
Instructors are permitted to photocopy isolated
articles for non-commercial classroom use
without fee. For any other copying, reprint or
republication, permission must be obtained
in writing from the Society. Copying for other
than personal use or internal reference, or of
articles or columns not owned by the Society
without explicit permission of the Society or
the copyright owner is strictly prohibited.

P l U S
CSI Regional Student Convention – A Report 42
Pre-Convention Tutorial on Data Science – A Report 44
Brain Teaser 45
CSI Reports 46
Student Branches News 48

Contents
Cover Story
History of Software Engineering: Status of
Software Component, Reusability and Quality
Munishwar Rai & Kiranpal Singh Virk

6

Technical Trends
Future of Software Engineering
Vijay Sharma

10

Research Front
An Essence of Soft Computing Techniques on Software Development Life Cycle
C Shoba Bindu, E Sudheer Kumar & K K Baseer

13

Security Corner
Pseudo Code Attack in Software Engineering
S Hemalatha & P C Senthil Mahesh

18

Articles
The Role of Software Engineering
Hardeep Singh & Parminder Kaur

22

Formal Methods in Software Engineering
A Sowmya Mitra

24

Real – Time System: A challenge for Testers
Nancy Goel & Shaily Jain

27

Risk Management in Effort Estimation of Agile Methodologies
S Rama Sree & Ch. Prasada Rao

30

Logical Hierarchy Requirement Target Planning (Lhrtp) technique to overcome
risk on Software Projects
R. Saranya

33

Technological advances in Software Engineering
V Vetriselvi

37

Printed and Published by Mr. Sanjay Mohapatra on Behalf of Computer Society of India, Printed at G.P. Offset Pvt. Ltd.
Unit-81, Plot-14, Marol Co-Op. Industrial Estate, off Andheri Kurla Road, Andheri (East), Mumbai 400059 and Published from
Computer Society of India, Samruddhi Venture Park, Unit-3, 4th Floor, Marol Industrial Area, Andheri (East), Mumbai 400 093.
Tel. : 022-2926 1700 • Fax : 022-2830 2133 • Email : hq@csi-india.org Chief Editor: Prof. A. K. Nayak

Chief Editor
PROF. A. K. NAYAK

Editor
DR. DURGESH MISHRA

Associate Editor
PROF. PRASHANT NAIR

Published by
MR. SANJAY MOHAPATRA
For Computer Society of India

Design, Print and
Dispatch by
GP OFFSET PvT. LTD.

Volume No. 40 • Issue No. 12 • mARCH 2017

sudeepav
Highlight

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

www.csi-india.org
 4

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Dear Fellow CSI Members,

“Before software can be reusable it first has to be usable.”
– Ralph Johnson

The theme for the Computer Society of India (CSI) Communications (The Knowledge Digest for IT Community)
March, 2017 issue is Software Engineering, the art and science of engineering software systems.

In this issue, Cover Story article is “History of Software Engineering: Status of Software Component, Reusability
and Quality” by Munishwar Rai and Kiranpal Singh Virk. The article traces the chronological evolution of the
discipline.

Vijay Sharma has contributed to Technical Trends through the article, “Future of Software Engineering”. This
focuses on challenges and opportunities that lies ahead of the software engineering community.

The Research front is titled, “An Essence of Soft Computing Techniques on Software Development Life Cycle”.
Here, C Shoba Bindu, E. Sudheer Kumar and K K Baseer have descibed various techniques like Poka-Yoke,
Fuzzy Logic, Neural Networks, Particle Swarm Optimization and Genetic Algorithm in the SDLC context.

The Security Corner has S. Hemalatha and P C Senthil Mahesh giving us new insights on Pseudo Code Attack
in Software Engineering.

We have several articles which provide us information on various facets and research topics of software
engineering and software project management like the “Role of Software Engineering” by Hardeep Singh and
Parminder Kaur; “Formal Methods in Software Engineering” by A. Sowmya Mitra; “Risk Management in Effort
Estimation of Agile Methodologies” by S Rama Sree and Ch. Prasada Rao; “Real – Time System: A challenge
for Testers” by Nancy Goel and Shaily Jain; Logical Hierarchy Requirement Target Planning (Lhrtp) technique
to overcome risk on Software Projects” by R. Saranya and “Technological advances in Software Engineering”
by V Vetriselvi.

This issue also contains Crossword, CSI activity reports from chapters, student branches and Calendar of
events. This issue also covers CSI Regional Student Convention organized by KIIT CSI Student Branch, KIIT
University, Odisha

We are thankful to Chair-Publication Committee and entire ExecCom for their continuous support in bringing
this issue successfully.

We wish to express our sincere gratitude to all authors and reviewers for their contributions and support to
this issue.

The next issue of CSI Communications will be on the theme “Big Data Analytics”. We invite the contributions
from all CSI members and researchers on this theme. We also look forward to receive constructive feedback
and suggestions from our esteemed members and readers at csic@csi-india.org.

With kind regards,
Editorial Team, CSI Communications

Editorial

President’s
Message

Dr. Anirban Basu, Bangalore, president@csi-india.org

01 March, 2017

Finally my terms as President of CSI is coming to an end! Now it is time to look back and
see what I had set to achieve and has been able to achieve.

CSI 2016 Convention organized by CSI Coimbatore Chapter during January 23-25, 2017
was a resounding success. The conference was very well arranged with high quality
papers, and invited talks. The ambience of the conference venue (the Le Meridian hotel)
was excellent. The registration had to be stopped as the halls were filled to capacity. The
Inauguration function was followed by Award Presentation to outstanding members and
IT personalities.

The three categories of awards (Fellowships, Hony. Fellows and Life Time Achievement)
were presented. My congratulations to all the winners. It was the first time that CSI-
IEEE Education Award was presented. The Award consisting of a plaque and US$500 was
presented to Dr. S T Selvi.

The meetings of all statutory committees were duly held and we had fruitful deliberations. I must congratulate all the Members
of the organizing Committee led by Mr. P R Rangaswamy, Mr. Ranga Rajgopal, Dr. Nadarajan, Dr. Subramanian and others for
working very hard and making CSI 2016 a memorable event.

A number of training programs are being planned for our Members. It includes certification trainings on Enterprise Architecture
with The Open Group, Internet Governance with ICANN etc.. We had a meeting with business delegation of Myanmar and we hope
to sign an MOU with Myanmar Computer Federation vey soon.

I am glad to inform you that our application to make CSI a Registered Education Provider of PMI (Project Management Institute)
has been successful and CSI Chapters will be able to offer PMP trainings.

Attempts are being made to improve different publications of CSI. CSI Journal of Computing will resurface in the month of April
2017 in soft copy form.

CSI Elections are going to start soon. It took time as we had to make some radical changes. When I was elected I had promised
to bring in transparency in different CSI activities. CSI elections every year is generating controversy every year. There have been
questions about the membership database, issues on the integrity of the vendor who has been entrusted to conduct the elections
since 2005 etc.. This year suggestions came up in the Think Tank meeting, National Council meeting, and in the AGM during
CSI-2016. Accordingly we have taken steps to incorporate the suggestions. You must have received communication from CSI that
a member need to validate his/ her identity by giving PAN or Aadhar number. The process has been completed we will have a
clean database for the elections. This year CSI elections will be conducted by NSDL, the most reputed agency in the country who
has been conducting e-voting. The agreement with NSDL has been signed and elections will start by March 15, 2017 and results
announced by end of this month.

There is no doubt that lot of improvements can be done in other aspects of working CSI. It is not possible to complete in one year.
The next President Mr. Sanjay Mohapatra will continue the work and hope the successive leaders continue from where we will
leave.

With best wishes to one and all,

Dr. Anirban Basu
President, CSI

 5
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

History of Software Engineering: Status of
Software Component, Reusability and Quality

 Munishwar Rai Kiranpal Singh Virk
Ass. Prof., M. M. Inst. of Computer Tech. & Business Management, Ass. Professor, Guru Nanak Khalsa College,
Maharishi Markandeshwar University, Mullana (Ambala), Haryana Yamuna Nagar, Haryana

1. Introduction
Software engineering as an

engineering domain has come a long
way from its origin to its present form.
It has taken quite a while for software
engineering to establish itself as a
discipline. It has been an interesting
journey all the way. The term ‘software
engineering’ was officially accepted in
1968 when NATO organized a conference
with the title ‘Software Engineering’ [1].
The best brains of the computer science
were brought together to discuss the
issues faced by the software industry
like declining profits, beyond schedule
delivery of solutions, over budgeted
projects, low quality products etc. These
issues were then collectively termed as
‘Software Crisis’ or ‘Software Gap’. In
this conference it was widely accepted
that software development has lagged
behind in implementing good practices
as other engineering disciplines do. The
solution suggested was a new discipline
called ‘Software Engineering’ in which
science and mathematics are applied to
make the properties of software useful
to people.
2. Programming Languages

Kolence [1], Boehm [2] and Wirth
[9] stated that, in the rapid changing
software field, there are wide gaps in
expectations of the users and deliverance

of the software industry. Some gaps are
created because the software engineers
have not learnt from the past mistakes.
Some gaps are created because
software engineers have failed to repeat
the past successes. Some gaps are
created because the software concepts
are sometimes over stated. Let’s try
to understand this ‘overstated’ thing
with a example from history. In 1950
COBOL language was designed to be
readable and understandable for non-
programmers. In 1990 it was projected
that 5th generation languages were
designed to solve a problem without
writing programming code. In 2004, it
was predicted that due to SOA (Service
Oriented Architecture), the computing
world will not require programmers.
However, even in 2017 the success of
lightweight programming languages
like Erlang, Lua, Forth, Squirrel,
newLisp etc negates the above
hypothesis of doing away with the
programmers. Table 1 clearly shows
that the programming languages had
been there and would be there in future
also.

Before 1990 the focus on improving
the software quality was through
improving testing techniques and code
reviews. Post 1990s the role of analysis
and design reviews in improving quality
was also emphasized with software

models like CMM, ISO etc. However the
role was over stated could be traced to
year 2000 when Polar Lander of NASA
crash landed on Mars surface [4]. The
reason of failure was simple - a software
bug turned off the jets while the prober
was 40 metre high and it simply fell
down rather than landing. The bug was
eventually a missing control structure
‘if’. The detailed inspection of the cause
revealed that due to schedule deadline
approaching, launch was initiated with
incomplete testing. In other words,
analysis and modeling substituted for
test and validation.
3. Sources of Software Problems

Number of concepts and ideas
have faded-in and faded-out since 1950.
Every concept has contributed to the
growth of software engineering. Where
some ideas have created success
stories, others have created failures. All
failures when analyzed revealed some
hidden problems and their sources. The
sources which contribute to the various
issues of software development are
shown in Table 2 and their relationship
in Fig 1. The overall software journey has
been all about dealing with these four
sources. All concepts are suggested,
developed or improved while keeping in
mind the one or more of these sources.

Internal
Complexity

Software
Problems

Project
Variability

Essential
Complexity

Human
Errors

Fig 1 : Software Problems and their
Sources

Table 1 : Year-Wise Programming Languages Making their Mark
Language Year Language Year Language Year Language Year
Fortran 1957 Pascal 1970 Haskell 1990 F# 2005
LISP 1958 C 1973 newLisp 1991 Clojure 2007
Algol 58 1958 Ada 1980 Python 1991 Go 2009
Cobol 1962 Smalltalk 1980 Java 1995 Rust 2010
BASIC 1964 C++ 1985 Ruby 1995 Dart 2011
LISP 1964 Objective-C 1986 JavaScript 1995 Julia 2012
SIMULA 1965 Eiffel 1986 C# 2000 Swift 2014
Forth 1970 Perl 1987 Scala 2003 Erlang 2016
Algol 68 1970

www.csi-india.org
 6

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

COvER STORY

4. Decade-wise History
In this section, we would try to know

the milestones in software engineering.
With each decade status of software
component, reusability and quality is
also discussed separately. Starting with
1950, software was considered second
to hardware. The journey of over 66 years
saw software emerged as a separate
independent industry. This transition
has seen how the software industry
disassociated itself from core practices
of other engineering disciplines. In later
evolution of software industry, the same
practices were incorporated in modified
way. The base year for the journey of
software could be taken as 1950s. The
concentrated and conscious effort to
establish software as individual entity
could not be traced beyond 1950.

1950-1959 : In this decade
computer meant hardware and
computer professionals meant
electrical/electronic engineers
or mathematicians. Software
professionals were second rung
leaders. The prominent software project
was SAGE (Semi-Automated Ground
Engineering) for U.S. and Canadian
air defense. This project brought
engineers from cross disciplines like
communications, electrical, radar and
computer. The hardware oriented focus
of the industry could be gauzed from the
fact that leading professional societies
of software professionals are IEEE
(Institute of Electrical and Electronics
Engineers) Computer Society and ACM
(Association of Computing Machinery).

Status of Software Component,
Reusability and Quality : The software
sizes were small and with no
predecessors. Therefore, there was no
need for component and reuse. The
only quality aspect was to deal with the
project management.

1960-1969: The decade saw the

boundaries between software and
hardware being drawn more clearly.
The hardware related practices like
‘measure twice, cut once’ were no longer
seem to be applicable on software
development. However, the thought
of making software development a
separate independent entity brought
its own sets of problems. First was to
assume software was easier to change
than hardware. Another misconception
was assumed that software unlike
hardware does not wear out. Ease
of modification lead to ‘code and
fix approach’. Doing away with civil
engineering fundamentals like, ‘strong
foundation results in stable building’,
resulted in structure less programs.
Critical design reviews of production
line manufacturing industry were
parked away. As the size and complexity
of the software was growing, human-
interaction issues gave the psychologist
angle to the engineering discipline.
In 1963 the first time-sharing system
appeared (MIT, Stanford, McCarthy, DEC
PDP- 1). It enhanced the user-computer
interaction .This resulted in evolution
from batch processing systems to time-
sharing. This also meant the start of
‘Internet’ minus ‘websites’. However,
websites came later in 1989. In 1968
NATO Science Committee [1] organized
first conference in Germany on software
engineering to discuss the issues being
faced by. The top computer brains were
invited to discuss the past, present and
future of the software industry. It was
widely discussed and accepted that
there are successful stories like OS/360,
sort routines, payroll applications.

Status of Software Component,
Reusability and Quality: This decade
coined the term ‘Software Component’.
In the invited address of NATO
conference [1], M.D. Mcilroy coined
the idea of ‘Mass Produced Software

Components’. It would be appreciative
of the fore-vision of Mcilroy by
quoting what he said about software
components in 1968: “My thesis is that
the software industry is weakly founded,
and that one aspect of this weakness is
the absence of a software components
sub-industry. We have enough experience
to perceive the outline of such a sub-
industry”. E. W. Dijkstra’s paper on
‘Structure Programming’ [6] talked
about software components and ‘Go
To Statement Considered Harmful’ [7]
were landmarks. Quality attributes like
correctness, portability, adaptability,
scalability, reliability, completeness
were deliberated upon in NATO
conferences [1][6].

1970-1979: The NATO conference of
1968 and 1969 became the foundations
for initiative for amalgamation of best
approaches of different disciplines
that were used in 1950s and solutions
suggested during 1960s. The decade
witnessed the emergence of the various
concepts as shown in Table 3.

Status of Software Component,
Reusability and Quality : The biggest
paradox of 1970 came with the Royce
Waterfall Model [8]. Although this
model was not sequential as shown in
Fig. 2, it was interpreted as sequential
process due to two main reasons, Firstly
due to government process standards
of that time. Secondly, Royce himself
have drawn sequential life cycle to
forewarn the pitfalls as in Fig 3. In fact
Royce had fore-warned about the pure
sequential nature of waterfall model in
his words:“I believe in this concept, but
the implementation described above is
risky and invites failure.” After a good
start, the late 1970 saw its own set of
limitations. With the growing domain
complexity (or essential complexity in
Table 1) for which software solutions
were being designed, quality factor
like scalability and productivity became
prominent issues. The metrology aspect
of the quality was also suggested by
McCall [11] and Boehm [10] in their
respective software quality models.

1980-1989 : The quality and
standardization saw the compliance
of standard maturity models (SW-
CMM, ISO-9001) in software processes
due to mandatory requirement of
government for software bidding. The
domain complexity resulted in various

Table 2 : Sources of Software Problems

Source Description
1 Internal

Complexity
Requirements Specification, Design, Source Code,
Maintenance Strategies

2 Essential
Complexity

Related with the domain for which software solution is
developed

3 Human Errors Human psychology, behavior aspects
4 Project Variability Repeatable and Unique aspects of the project

Fig 1 : Software Problems and their Sources

 7
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

COvER STORY

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

Table 3 : The Concepts of 1970s
Concept Author Concept Author
Mathematical Proof C. Floyd Psychology of Computer Programming Weinberg
Programming Calculus E. W. Dijkstra Mythical Man Months Brooks
Top-Down Structured Programming Mills Pascal Wirth
Coupling & Cohesion Constantine Software Evolution Dynamics Lehman and Baldy
Information Hiding Parnas Reusable Product Line Toshiba
Abstract Data Types W.A. Wulf

J.V. Guttag
W.C. Lim

Structured Design & Programming Jackson

Boehm Quality Model B. W. Boehm Waterfall Model W.W. Royce
McCall Quality Model J. A. McCall

software tools like IPSE (Integrated
Programming Support Environment),
CASE (Computer-Aided Software
Engineering) Other achievements of this
decade were object oriented methods,
software factories [5], 4GL, CAD/CAM.
In 1985 FSF (Free Software Foundation)
and GNU-GPL (General Public License)
were established by Richard Stallman
which became the milestone for Open
Source Software in 1990s.

Status of Software Component,
Reusability and Quality: In 1986, Brooks
[3] suggested there is no ‘silver bullet’
in software engineering that will solve
all problems. Another interpretation of
Brooks’ thought could be that till now
the overall objective of the improving
the software was to eliminate one or
more source of problem (refer Table
1). Instead of waiting for technological
breakthrough we must go for
Software Reuse, Rapid Prototyping
and Incremental development. In
1988, Barry Boehm suggested a risk-
driven model known as ‘Spiral Model’
to introduce concurrent engineering.

Training, reuse, prototyping, and
process improvement were suggested
to improve quality.

1990-1999 : The late 1980 and
earlier 1990 witnessed work of three
influential authorities on object oriented
aspects namely- Grady Booch’s OOAD
(Object Oriented Analysis and Design),
James Rumbaugh’s OMT (Object
Modeling Technique) and Ivar Jacobson’s
OOSE (Object-Oriented Software
Engineering). The mid 1990 saw the
amalgamation of OOAD, OMT and OOSE
into UML (Unified Modeling Language).
The emergence of ‘world wide web’
further strengthened the OO methods.
Concurrent engineering along with FSF
and GNU-GPL of 1980s contributed
in Open Source Software. The famous
‘dot-com bubble’ speculation came to
the end in 1999-2001. The famous Y2K
(Year 2000) problem of converting the
legacy software compatible with twenty
first century has been a turning point.
The main issue in Y2K problem was that
the legacy applications stored only the
last two digit of the year. At the turn of

the century the year would have been 00
instead of 2000.

Status of Software Component,
Reusability and Quality: 1990s was also
reuse intensive with COTS (Components
Of The Shelf) intensive software
development, agile methodology and
eXtreme programming. The software
quality models namely- FURPS,
Dromey and ISO 9126 were suggested
during this period. The component
based architecture were concretely
documented as COM, DCOM and
CORBA.

2000-2010: The ‘google search
engine’ and the cloud computing wre
the main successful contributions
of this decade. The other ones were
Model Driven Architecture, Concurrent
risk driven process, Domain specific
software architectures, hybrid Agile
and plan driven methods – which took
under its umbrella the initiatives of
1990 like eXtreme Programming. Object
oriented methods of 1980s were further
improved with design patterns and
UML. The concept of web services and

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

PRELIMINARY
PROGRAM

DESIGN

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

OPERATIONS

PRELIMINARY
DESIGNS

ANALYSIS

PROGRAM
DESIGNS

CODING

TESTING

USAGE

Fig. 2: The Royce Waterfall Model (1970) Fig. 3 : The Royce Waterfall Model (1970)

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

OPERATIONS

COvER STORY

www.csi-india.org
 8

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

aspect oriented programming were
widely applauded. The Y2K problem
of previous century initiated the idea
of integration process and enterprise
level development.J2EE, .NET were the
prominent examples.

Status of Software Component,
Reusability and Quality : Components
were taken to a new level with SOA
(Service Oriented Architecture) in
2009. Scalability and Security came up
as major quality concerns. Software
Fortress Model was suggested in 2003
where in every aspect of software was
in analogy of a fortress.

2010-2016 : The sustained growth
of cloud computing saw every service,
software, database to be cloud oriented.
The supply chain management
remains the core competency issue
for commercial applications. Machine
Learning, IoT (Internet of Things),
product line engineering and light
weight programming are the happening
things of this decade.

Status of Software Component,
Reusability and Quality : Software quality
model ISO 25010 has taken under its
fold the previous works on software
quality models especially the work of
Barry Boehm, and James McCall.
5. Future Challenges

One of the major challenges to
software industry is to provide high
degree quality and functionality at low
cost and that too with-in the shortest
possible time. There is still an open
challenge in building system with
software components to accurately
predict the quality attributes by the
produced system. Today’s typical
application is a result of integration of
various technological advancements
that may include:
 � Service-Oriented Component-

based Applications
 � Multi-Language Programming
 � Components Distribution via

Remote Services
 � Heterogeneous environments
 � Dynamic Isolation & resilience
 � Development & Monitoring Tools

Service-oriented Component-
based Applications provides a
framework to construct modularized
applications consisting of software
components that uses software
services provided by other components.
Component-based applications SOA are
slowly and sturdily making “ubiquitous
computing” a success. Security issues
in reusable components and the use of
vulnerable third-party components and
code in new applications has become
such a major security issue [12]. Except
for the white papers of technology
organizations like IBM, Cohorte,
Infosys, Stelligent etc, very few research
papers are available that considers
the concurrent status of the software
component reusability in the industry.
6. Conclusions

There have been two approaches
of software development. One approach
is to eliminate the four sources that
contribute to software problems. This
is not even theoretically practical as
domain complexity would increase in
future also with software engineering
travelling in unchartered waters. Second
approach is to accept the fact that the
four sources cannot be eliminated and
word around it. The history clearly points
to the fact that new domains will be
more complex, human interaction could
be minimized but not eliminated, newer
methods, architecture, languages and
technologies would be developed. The
only front of improvement lies in good
quality models with focus on metrology
aspects.

7. References
[1] P. Naur and B. Randell, “Software

Engineering: Report of a conference
sponsored by the NATO Science
Committee,” NATO Softw. Eng. Conf.,
no. October 1968, p. 231, 1968.

[2] B. Boehm, “A View of 20th and 21st
Century Software Engineering,” Proc.
28th Int. Conf. Softw. Eng. SE - ICSE
’06, pp. 12–29, 2006.

[3] F. P. Brooks, “No Silver Bullet —
Essence and Accident in Software
Engineering,” IEEE Computer 4, No. 2,
pp. 10-19, 1987.

[4] N. G. Leveson, “The Role of Software
in Recent Aerospace Accidents,”
19th International System Safety
Conference, 2004

[5] J. Greenfield and K. Short, “Industrializing
Software Development”, http://
softwarefactories.com/index.html

[6] J. N. Buxton and B. Randell, “Software
engineering techniques,” Rep. a Conf.
Spons. by NATO Sci. Comm., April, 1969.

[7] E.W. Dijkstra, “Go To Statement
Considered Harmful,” Communications
of the ACM, Vol. 11, No. 3, pp. 147-148,
1968.

[8] W. W. Royce, “Managing the
Development of Large Software
Systems: Concepts and Techniques,”
Proceeding of WESCON, 1970.

[9] N. Wirth, “A Brief History of Software
Engineering,” IEEE Ann. Hist. Comput.,
vol. 30, pp. 32–39, 2008.

[10] B. W. Boehm, J. R. Brown, and M. Lipow,
“Quantitative evaluation of software
quality,” in 2nd Int. Conf. Softw. Eng., pp.
592–605, 1976.

[11] J. A. McCall, P. K. Richards, and G. F.
Walters, “Factors in software quality:
Concept and Definitions of Software
Quality,” RADC AFSC, Griffis Air Base,
New York, RADC-TR-369, Vol I (of
three),. November 1977.

[12] Cobb M. (2013, Nov.), “Open source
code reuse: What are the security
implications?” [Online], Available:
http://searchsecurity.techtarget.com/
answer/Open-source-code-reuse-
What-are-the-security-implications/

n

 9
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

About the Authors
Dr. Munishwar Rai [CSI-00133605] is currently
working as Associate Professor at MMICT&BM
(MCA department) of MM University, Mullana, India.
He has around 19 years of teaching experience. His
area of interest is software Reusability, Data mining,
Computer Organization and computer networks. He
is a life member of CSI. He has published more than
20 papers in both international and national levels.
He is involved in various academic and automotives
administrative activities at MM University, Mullana.
(e-mail: munishwar.rai@mmumullana.org)

Kiranpal Singh virk [CSI-I0175624] is working as
Asst. Professor with Dept. of CS, Guru Nanak Khalsa
College, Yamuna Nagar, Haryana, India. Currently he
is pursuing Ph.D. from Maharishi Markandeshwar
University, Mullana (Ambala), Haryana, India. He is
author of one book, and more than 10 papers. He is
a life member of CSI, and APG (Association of Punjab
Geographers), and member of IPDA (International
Professional Development Association). His research
interest includes Software Engg., IT, and Wireless
Sensor Networks. (e-mail: kpsvirk@yahoo.com)

COvER STORY

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

Future of Software Engineering
 Vijay Sharma

 VP, SilverOakHealth, Engineering for Bangalore based Digital Healthcare company

Our dependence on software permeates nearly every aspect of our lives, it is a good time to ask
ourselves where this relationship is headed. But one thing is sure here that the softwares of tomorrow
will work completely on new challenges encountering altogether different constraints. This article
focuses on challenges and opportunities that lies ahead of the software engineering community. The
future is running at us with unprecedented pace and the best we can do is to embrace it with open mind
and accelerate our learning so that we are better prepared for tomorrows challenges.

1. Software Trainers
With all the Machine Learning and

Artificial Intelligence coming into the
main stream, machines will need to
learn from vast amounts of data. Some
time in the future they will self train
too, but that is at least a decade away,
till then we will need humans to train
machines. Among us there will emerge
a new bread of software professionals
known as Software Trainers, who will
tell programs to exists on the world
and how to recognize objects. Trainers
will tell programs what objects they
would see, in exact shape, color and
size. They state exact sequence of
actions, what to process and when to
process etc. Data engineering will play
a bigger role then compared to software
engineering. Software trainers don’t
need to understand machine learning

techniques, but apply them. The
programs will learn how to put the
pieces together using through feedback
and digital playgrounds, thus creating a
path of self induced learning.
2. More code will Created and much

more will be Destroyed
With more open source projects

coming up and more kids learning
programming at school level. Software
development is becoming highly
accessible to everybody, enabling
anybody to create software or apps.
With the introduction of Cloud, the
infrastructure for hosting data and
software has virtually dropped to near
zero, many instances of software can
be created in a few hours, potentially
scaling to millions of users, then
discarded a few days later. We will
see billions of disposable apps being

created and destroyed very soon, most
even lasting for just few days. As in the
case mobile apps for events, product
launch specific website we will see lost
of code will be used just for few days
and discarded later and never being
used again.
3. Binary is not the past but it is the

future
With the entry of Internet of Things

in future in everyday life more and more
devices and machines will communicate
with each other, this communication
will surpass the machine to human
communication in the order of both
scale and magnitude. Software code for
tomorrow will be used more for machine
to machine communication than for
human to machine. Passing data back
and forth in JSON packets with REST
protocols with lots of overhead of tags
will make the communication and thus
ultimately performance slow. If both
ends of the interface are machines then
why would they need to communicate
using text and pay for overhead of
JSON & XML when in the receiving end
it needs to converted back to binary?
Thus why not ship the bits directly? We
will see introduction of new tools and
software procedures which are targeted
towards producing machine understand
programs. The application code and the
transmission packets will become more
and more binary efficient signifying
leap in the communication protocols.
While maintainability and human
readability are important today, it might
get trumped by the need for extreme
performance tomorrow. [Image Source : https://cdn2.hubspot.net/hubfs/326641/CAPA.jpg]

TECHNICAL TRENDS

www.csi-india.org
 10

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

4. Smartphones will do everything
The little rectangular screens have

been revolutionizing every part of our
lives for more than a decade, and the
changes are beginning to get interesting.
As we have added more sensors we
are able to collect and report much
more detailed information. There are
various instances available where data
collected from these sensors is being
used to provide medical assistance
when needed. The microphone can
pick up your heartbeat. The camera
can look at the back of your throat. The
accelerometers can track your exercise.
All of these can be linked to a cloud full
of doctors who can pass your case onto
someone who specializes in what ails
you. The navigation apps are morphing
into route reservation and planning apps
that do everything but steer the car. The
exercise tracking apps are becoming
tools that track all of the rhythms of our
body from sleep to work and even more.

The gyroscope, accelerometer,
magnetometer, and so forth are starting
to get more friends in the neighborhood.
Some new phones for instance are
even coming equipped with sensors to
measure pressure, temperature, and
humidity. Yes, the next generation of
smart devices will make the current
set look basic. In the coming years we
will see a lot of software engineering
going into smartphones enabling
them to do everything and giving the
device ultimate powers. Smartphones
of the future could use sensors and
machine language to recognize other
objects around them. These devices
will not gather data but will also make
apt decisions and choices based on

the data. What if leaving your phone in
the car for 4 hours triggers a reaction
where the mobile itself make a phone
call or e-mails to tell you where it is?.
What if the mobile automatically start
playing some mood elevation music
when it senses you are stressed?

The point is hat the smartphones
aren’t going anywhere. But instead of a
focusing on the world within the phone’s
screen, the smartphone of tomorrow will
be tuned more than ever before to the
world around you and the programmers
of today will play a great role in shaping
the future of smartphones.
4. Databases will perform

increasingly sophisticated tasks
been almost two decades since

when we have moved business systems
to Database based storage system from
the file base storage. Our decision has
been good as databases have proved to
be most efficient way of handling data
ever known to us. The most common
architecture around database is that
you have an Application Server handling
all business logic and you have set
of Databases dumped with all kind
of data ranging from texts, numbers,
passwords etc. The data of interest is
fetched from database processed and
results are saved back to database.
Simply extracting the information
from the database and handing it to
a separate “big data” package will
become increasingly time consuming
and require much more programming.
Leaving the data in the database and
letting its engine perform the analysis
will be much faster because it will limit
the overhead of communication, as well

as decrease the amount of programming
necessary to extract value from the
data store. The current generation of
database are becoming more and more
intelligent and consistently proving that
they are capable of doing much more
then just storing data. This trend will
continue and we will see more and more
sophisticated operations to be pushed to
the database layer. The future databases
will be equally capable of performing
aggregations, finding patters and even
doing complex statistical functions.
This capability will provide immense
boost to over application performances
as it will lower the overhead of moving
data around.
5. Crowd-Sourced Documentation

will become the norm
Community of developers like Stack

Overflow will become the new norm
for reference while books and official
documentation will become the thing of
the past. Programmers are often able to
find the answer they are seeking quickly
using Stack Overflow then alternatives
like reviewing documentation, seeking
assistance from a co-worker, etc. The
recent trends show that Stack Overflow
questions are visited 2x-10x more often
than official documentation. This is
driven by the fact that Stack overflow
documentation has more depth and
breadth both in terms of numbers and
advancement then compared to any
official documentation available. The
immense knowledge available in crowd
sourced documentation will not only
help us in better situate our self in
tackling massive software challenges,
but also enable long-tail developers
to quickly create software for reuse
and remix of other developer’s efforts.
Having access to immediate solution to
the problems faced by developers will
be helpful in diagnose and resolve the
issue at hand, significantly boosting the
engineering productivity.
6. Software will direct Policies

As more and more business and
consumer workflows will be captured
and executed in software, software will
finally become the way to establish new
policies and not politics. As in the case
of Uber, no government had any policy or
legislative acts pertaining to app based
transportation earlier but with the
introduction of Uber in their respective [Image Source : http://code-epicenter.com/wp-content/uploads/2016/01/pvsd.jpg]

TECHNICAL TRENDS

 11
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

states, governments came forward to
formulate a policy around this method
of transportation to regulate it. World
of software is changing so fast that no
government can keep with the pace,
thus we will ultimately see more and
more policies and acts revolving around
consumers directed by app.
Conclusion

Information technology is about
to grow dramatically with significant
impact to both the global economy and
everyday life. Computing power will
increase rapidly as the costs of hardware

and communications are dropping,
making it increasingly more economical
to implement systems in software
rather than hardware. Mechanical
devices in automobiles, airplanes,
and power plants will be replaced by
software components because software
is more adaptable, can provide more
functionality, and can be upgraded more
easily to accommodate future needs. All
industries including banking, insurance,
telecommunications will use software
to automate and personalize the
services they offer to their customers.

The opportunity to add net new value
within the software ecosystem will
decrease due to shift of analytics and
cognitive capabilities from humans to
machines. To stay relevant we don’t only
have to be good software developers
but we also need to engage our self in
leveraging the full software ecosystem
encompassing rapid iteration, instant
distribution and insightful monitoring.
We are at an inflexion point and we have
to embrace the future with an open
mind while being ready for new set of
challenges. n

About the Author

vijay Sharma [CSI-I1510163] Currently Vijay works a VP - Engineering for Bangalore based Digital Healthcare
company SilverOakHealth. In this role Vijay leads the Technology Team at Silver Oak Health. Vijay and his team
are responsible for design and delivery of next generation, world-class products, services and technologies
related to mental healthcare.

TECHNICAL TRENDS

Kind attention
CSI has the pleasure to announce 15% discount on the membership
fee for the new enrolment of the life members. This announcement
has been made on the eve of CSI Foundation Day celebration on
6th March 2017. This offers shall remain continue from 1st March
2017 to 31st March 2017. The discount membership fee shall be
` 8500 + 15% service tax = ` 9775/- in place of the actual
membership fee
` 10000+15% service tax = ` 11500/-.
Therefore all esteem members of CSI are requested to kindly
participate in the special membership drive to motivate their
friends and fellow professionals to take the benefits of this
opportunity.
For further details kindly refer to CSI
website : www.csi-india.org or write to
swapnil@csi-india.org or sonali@csi-india.org

Prof. A. K. Nayak
Hony. Secretary

www.csi-india.org
 12

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

 13
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

An Essence of Soft Computing Techniques on
Software Development Life Cycle

 C Shoba Bindu E Sudheer Kumar K K Baseer
 Professor, Department of CSE, JNTUA Assistant Professor, Department of CSE, Asso. Prof., Dept. of IT,
 Sree Vidyanikethan Engineering College, Tirupati Sree Vidyanikethan Engineering College, Tirupati

Software Engineering is a
discipline that aims at producing high
quality of software through systematic,
well planned approach of software
development. To accomplish high
quality software it is indispensable to
produce defect free product. Defect is
the unexpected or undesired conduct
that occurs in the product. Anything
related to defect is a recurrent process
not a particular state, whereas
enlightening the qualities of software
like reliability, usability, availability,
maintainability, cost, time and energy
is key role in software development.
These qualities are more loyal on the
requirements, analysis, architecture,
design, development, testing and
deployment.

In order to improve the software
qualities on these cycles, shunning
mistakes or making alarm for each
activity may be suitable choice. Each and
every element of software is diligently
related to software quality. The software
quality decreases when the software
complexity increases. Therefore,
understanding, measuring, managing,
controlling and minimizing the software
complexity is a big challenge in software
engineering. It is important to focus
on quality, monitoring the product and
system performance. On the other
hand, usability is important to safeguard
the software quality and to increase
the speed and accuracy of the range
of tasks carried out by the users of a
system because in software industries,
the performance of the software is
mostly improved through usability. In
order to accomplish all of these needs
in software development environment,
some of the Soft Computing Techniques
(SCT’s) will helps in a better way.
These are Poka-Yoke, Fuzzy Logic,
Neural Networks, Particle Swarm
Optimization, Genetic Algorithm, etc.

This study gives an essence and impact
of SCT’s on Software Development Life
Cycle (SDLC).
1. Introduction to SCT’s

The following are the suitable SCT’s
used for the development of defect free
software in improving the quality:

Poka-Yoke: In software
development processes, Poka-Yoke
concept is one of the methods to enrich
usability and quality. Poka-Yoke (PY)
which is a Japanese term, Poka means
mistake and Yoke means prevent
which is mistake preventing or mistake
proofing technique. HP introduced
PY into their Common Desktop
Environment software and prevents
hundreds of defects before it reaches
to their customers. Shigeo outlines
a method that uses sensor or other
devices for hooking errors that may
pass by operators or assemblers and
it is said to be PY. A finest example of
Poka-Yoke design from manufacturing
industry is SIM card slot in cell phones.
The seamless example of Poka-Yoke
process in software application is Gmail
email attachments feature.

Fuzzy logic: This theory was
developed by Lofti A. Zadeh in the 60’s
and is based on the theory of fuzzy sets.
It deals with the vagueness, uncertainty
and imprecision of many real-world
problems and also to simulate human
reasoning and its ability of decision
making based on not so precise
information present in the early phase.
Some of the promising key application
areas of Fuzzy Logic (FL) which have
been recognized are - Project Planning,
Software Reliability Prediction, Software
Usability, Software Quality Assessment,
Performance Analysis of Software, Test
case Allocation, Software Reusability,
Software Fault Prediction and Size
Estimation.

Neural Networks: It was developed

to model the neural architecture and
computation of the human brain.
A Neural Network (NN) consists
of simple neuron-like processing
elements. Processing elements are
interconnected by a network of weighted
connections that encode network
knowledge. NNs are highly parallel and
exercise distributed control. NNs have
been used as memories, pattern recall
devices, pattern classifiers, and general
function mapping engines. A classifier
maps input vectors to output vectors
in two phases. Neural Network (NN)
can be used to build tools for software
development and maintenance tasks,
it can perform better in estimations &
predictions, and it is used in integrating
security at the design level of SDLC and
also can be used across a variety of
testing criteria.

Particle Swarm Optimization:
Swarm Intelligence (SI) is an innovative
distributed intelligent paradigm for
solving optimization problems that
originally took its inspiration from
the biological examples by swarming,
flocking and herding phenomena in
vertebrates. PSO is a robust stochastic
optimization technique based on the
movement of intelligent swarms. PSO
applies the concept of social interaction
to problem solving. The basic concept of
PSO lies in accelerating each particle
towards its Pbest and Gbest locations
with a random weighted acceleration at
each time. PSO will be used to estimate
the parameters for predicting software
reliability, helps controlling the quality
and predicting cost of software, it will
help the project managers to efficiently
plan the overall SDLC of the software
product, can perform performance
prediction, trades-off between
architectural designs alternatives,
and also it can be used to effectively
generate alternatives in spanned design

R E S E A R C H F RO N T

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

www.csi-india.org
 14

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

space and facilitate the design decision
during the development process.

Genetic algorithm: These are often
used for optimization problems in which
the evolution of a population is a search
for a satisfactory solution given a set
of constraints. Genetic algorithms are
one of the best ways to solve a set of
problems for which little information
is given. Genetic algorithms use the
principles of selection and evolution to
produce solution for various complex
problems. The Genetic Algorithms also
out performs the exhaustive search
and local search techniques, so they
will work well in any search space. GA
can be applied to automatic test data
generation for path coverage which
is an undecidable problem, this will
perform autotuning strategy that can
be used for optimizing performance
or energy or a combination thereof, it
can be used as architectural selection
in response to the current situation of
various environment and also it focus
on the real world problem in the SDLC
such as Organizations understaffed,
Separation of duties.
2. Usage of SCT in SDLC

In order to eradicate and capture
issues the PY process implementation
mainly depends on tester’s ability. Using
Poka-Yoke Integration in Software
Engineering (PYISE) helps stakeholders
of software development to reckon
success of work in progress [1]. More
effort was spent towards requirements,
project conceptualization and coding
phases to triumph better achievements
based on Phase scores and Phase wise
achievements. Obligating validation
PY in kit is always a good suggestion
for developers so that the validation
mistakes should be handled in your
code. The HQLS-PY model [2] is to
inject and integrate product monitoring
at the right place to ensure the quality
focus of the software based on the user
experience and helps in alerting at the
right time. The PYISE tool has additional
two phases which are rollout and post
implementation support. Each and every
phase is having its own PY integration
activities and related scores along with
weights score need to dispense by the
project manager and achievements
scores need to assign by team lead or

equivalent followed by phase scores will
be evaluated by both project manager
and team leader as well. In Fuzzy-
based Poka-Yoke Model (FPYM) [3] by
using four metrics called, UGAM, IoI,
SM and SSM software performance
attributes are defined and performance
is analyzed to avoid and identify human
mistakes in the process of life cycle.

Project managers who are using
project management models early in a
project provide numerical inputs which
are not always feasible. Providing a
more expert knowledge based approach
to build the model using FL technique
will help to represent the imprecision
in inputs and outputs. FL could also be
used in size estimation which can be
done in advance to make better plans,
and succour in tracking progress.
In the model [4], the defects are
predicted using metrics Requirement
Defect Density (RDD), Requirement
Specification Change Request (RCR)
and Requirement Inspection and
Walkthrough (RIW) at requirement phase
followed by Cyclomatic Complexity (CC)
and Design Review Effectiveness (DRE)
to predict the defect at the end of design
phase and Programmer Capability (PC),
Process Maturity (PM) metrics at the
end of coding phase will get the total
number of defect predicted for the
software before testing phase. Using
fuzzy-based methodology the model [5]
helps to assess usability software risk
by taking into account the risk factors,
risk likelihood and risk severity. Each
of risk factors is evaluated using Fuzzy-
AHP (Analytic Hierarchy Process) to
probe multi-criteria decision making
from hierarchy criteria.

NNs are the most common
software estimation model-building
technique used as an alternative to
mean least squares regression [6]. NN
on Cost estimation with cluster analysis
increases the training efficacy of the
network. NN has also been used to
determine the most suitable metrics
for effort estimation. Deriving a metric
using a NN has several advantages.
The developer needs only to determine
the endpoints (inputs and output) and
can disregard the path taken. A three-
layered feed-forward back-propagation
neural network is used software
design [7]. The back-propagation

neural network is a well-known type
of neural network commonly used
in pattern recognition problems. The
McCall hierarchical software quality
measurement framework (HSQF) model
expresses the intuition of developers in
selecting particular factors and criteria
leading to overall software quality
measures. NN can be used across a
variety of testing criteria, test case and
coverage metrics, and fault severity
levels. Another area of software Testing
in which NN has found attention is its
use as Test Oracle. Neural Networks
has been one of the technologies used
during software implementation and
testing phase of SDLC for software
defect detection in order to intensify
software reliability and it has also been
used in area of application security
and network security in technologies
such as authentication system,
cryptography, virus detection system,
misuse detection system and intrusion
detection systems (IDS).

The below figure 2.1 will depicts
you the broad way of understanding
the integration of soft computing
techniques in various phases of SDLC
which will help to deliver defect free,
quality, reliability and high usability
product to customers.

The Particle Swarm Optimization
to tune parameters in Software Effort
Estimation which reduces the Mean
Absolute Relative Error. The combination
of particle swarm optimization (PSO)
and bagging technique for improving the
accuracy of software defect prediction.
The integration of Quality Function
Deployment (QFD) technique and
PSO method to develop more precise
software cost estimation model [8]. The
use of PSO in the field of performance
prediction will systematically support
the creation and evaluation of new
architecture candidates [9]. PSO is
used to compare and find the minimum
software test cases for testing the
software. PSO out performs primarily
for complex functions with big search
spaces. The use of Particle Swarm
Optimization (PSO) technique to
estimate the parameters of software
reliability models [10].

In [11] energy benchmarking shows
that there is a strong correlation between
performance and energy requirements.

R E S E A R C H F RO N T

 15
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Genetic algorithms are also amenable
to complex objective functions that
take performance and energy both into
account for optimization. Additionally,
they can be easily modified to include
architectural parameters such as the
line size and associativity of a cache.
GA based approach [12] is discussed
for the architectural selection problem
which enables a software system
to autonomously search possible
architectural instances (the search
space). GA has been used as one
good solution for automatic test data
generation for path coverage is an
undecidable problem, which has a
great influence on path coverage of
software testing. In MOGA [13] focused

on the real world problem in the
systems development life cycle such as
Organizations understaffed, Separation
of duties.

3. Impact of SCT on SDLC
Avoiding post release issues which

in turn help us to entrap defects in early
phases making it cheaper to fix. The
human resource monitoring precedes
to product monitoring which is highest
in requirement phase followed closely
by coding, conceptualization and
design thereby achieving quality focus
in software development. Validation
PY in kit can help developers to revisit
and update periodically on validation
issues. PYISE tool is to upsurge the
quality of the software by plummeting

the number of defects and errors during
the development of software and also
can be applied to appraise the project in
progress which helps in making process
systematic.

The benefit of fuzzy logic
for software engineering project
management is the flexibility available
in terms of the types of input and
output variables which will not lead to
over commitment. The concept of fuzzy
logic in size estimation is gathering size
data on previously developed programs
and dividing the historical product size
data into size ranges which will help
to compare the planned product with
these prior products. Different specified
metrics used in FIS will help you to find
out the defects before testing phase in
software development process. Fuzzy-
based methodology allows to calculate
the magnitude of risk on software
usability by using fuzzy-AHP. The below
Fig. 3.1 showcase about usage of
various techniques of soft computing
on different levels of SDLC phases
to achieve several parameters in the
process of software development.

NN with cluster analysis for
software development cost estimation
will be a promising approach to provide
more accurate results on the forecasting
of software development costs. Unlike
the traditional approach, where the
developer is saddled with the burden
of relating terms, a NN automatically
creates relationships among metric
terms. To identify the possible attacks
from the design and also to evaluate
scenarios from software designs NN is
used. The introduction of fuzzy sets into

Software Development Life Cycle

Ph
as

e

Requirements Design Development Testing Deployment

Requirements &
Needs Validations

Product
Requirements

Software Product
Specifications

Software
Architecture

Soft Computing Techniques

Product Monitoring Quality of Service

Quality

Design Production
Monitoring

Coding Logic
User Interfaces

Algorithms
Events

Testing
Verification
Validation

Fig. 2.1 : Integration of SCT in SDLC Phase

Parameter

Technique

Effort, Size
& Cost

Estimation

Architecture
Selection

Defect
Prediction

Developers
on Quality
Measure

Performance
Prediction

and
Optimization

Success
of work

Progress

Security
Concern &
Reliability

Test Data
Generation

Quality of
Services

Poka-Yoke

Fuzzy logic

Neural
Network
Particle
Swarm
Optimization
Genetic
Algorithm

Fig. 3.1 : Achievable Parameters with SCT on SDLC

R E S E A R C H F RO N T

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

www.csi-india.org
 16

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

the McCall hierarchical software quality
measurement framework (hsqf) makes
it possible to capture information
granules, to give meaningful “shape” to
otherwise daunting collection of factors,
criteria and metrics their relationship
and relative importance. The neural net
formalizes and objectively evaluates
some of the testing folklore and rules-
of-thumb that is system specific and
often requires many years of testing
experience.

This unique combination will help
the project managers to efficiently plan
the overall software development life
cycle of the software product. A larger
search space is explored and architects
could be able to select better alternative
architecture model in the field of
performance prediction. Software test
is the main approach to find errors and
defects assuring the quality of software.
The estimated model parameters
were used to predict the faults in a
software system during the testing
process. The PSO technique provided
sets of parameters with each software
reliability model evaluated.

Usage of GA for the target routines,
improving performance result in
simultaneous reduction in energy
requirements and also will effectively
explore a hardware software co-
design. Using of GA on architectural
selection problem to find an optimal
instance to the current situation and
requirements within a short time. With
two phase approach is used in order
to generate test data which can cover
the paths having the lowest coverable
probability. Multi objective genetic
algorithm (MOGA) is suggested for
recruitment of the staff, allocation of
Jobs based on the skills they possess.
MOGA has been used to minimize the
cost associated, minimize the time
involved and to maximize the efficiency
by proper usage. The automatic test
case generation will create random
population of solutions, evaluate the
solutions, select parents, create child
solutions, evaluate children, swap some
of the existing solutions with some of
the better solutions, repeat until the
termination criterion is met and return
best solution.

Conclusion:
This study is to produce defect free

product and to improve the software
qualities. Focusing on quality and
monitoring the product to increase the
system performance is very important.
Also on the other hand, at the time of
tasks performing by users of a system it
is important to safeguard the software
quality and to enrich the speed and
accuracy of the range of tasks. All of
these needs in software development
environment can be accomplished
with Soft Computing Techniques
(SCT’s). In future using of new metrics
such as software medium, software
system measurement, inclusion of
architectural parameters to effectively
explore a hardware software co-design,
reduce information loss and provide
greater design alternatives at later
stages, security capabilities into design,
cost benefit analysis of models will
drives in greater extent for defect free
and quality product.
References:
[1] Baseer K.K, Rama Mohan Reddy.A,

Shoba Bindu.C, “Quantifying Poka-
Yoke in HQLS: A new approach for
High Quality in Large Scale Software
Development”, 49th Convention of CSI
on Emerging ICT for Bridging Future
(CSI-2014), December 12-14, 2014, CSI,
Hyderabad, proceedings in Springer-
Advances of Intelligent Systems and
Computing Vol.337, ISBN No: 978-3-
319, pp.293-301, 2014.

[2] K. K. Baseer, A. Rama Mohan Reddy
and C. Shoba Bindu, “Monitoring tool
for mistake proofing quality software”,
IP India Patent: 2007/CHE/2015 A,
The Patent Office Journal, Issue No.
19/2015, May 8, pp. 33133,2015.

[3] K. K. Baseer, A. Rama Mohan Reddy,
C. Shoba Bindu, “FPYM: Development
and Application of a Fuzzy based Poka-
Yoke Model for the Improvement of
Software Performance”, InderScience-
Special Issue on Soft Computational
Approaches for Risk Exploration
in Global Software Development.
(Accepted-Under Production stage).

[4] H. B. Yadav and D. K. Yadav, “A Fuzzy
Logic based Approach for Phase-wise
Software Defects Prediction using
Software Metrics”, Information and
Software Technology, vol. 63, pp. 44-57,

2015.

[5] AfriyantiDwi Kartika and Kridanto
Surendro, “A fuzzy-based methodology
to assess software usability risk”, in
Proceedings of the IEEE International
Conference: Information and
Communication Technology (ICoICT),
2016.

[6] Yogesh Singh, Pradeep Kumar Bhatia,
Arvinder Kaur, OmprakashSangwan,
“Application of Neural Networks in
Software Engineering: A Review”, in
Proceedings of Third International
Conference, ICISTM 2009, Ghaziabad,
India, March 12-13, 2009.

[7] A. Adebiyi, JohnnesArreymbi and Chris
Imafidon, “Applicability of Neural
Network to Software Security”, in
Proceedings of the IEEE International
Conference on Computer Modelling
and Simulation (UKSim), 2012.

[8] Divya Kashyap, A. K. Misra, “Software
cost estimation using Particle Swarm
Optimization in the light of Quality
Function Deployment technique”,
International Conference on Computer
Communication and Informatics
(ICCCI), 2013.

[9] Adil. A. A. Saed, Wan M.N. Wan Kadir,
“Applying Particle Swarm Optimization
to Software Performance Prediction An
Introduction to the Approach” Malaysian
Conference in Software Engineering
(MySEC), 2011.

[10] Alaa Sheta, “Reliability Growth Modeling
for Software Fault Detection Using
Particle Swarm Optimization” IEEE
Congress on Evolutionary Computation,
CEC 2006.

[11] Tania Banerjee and Sanjay Ranka, “A
Genetic Algorithm based Autotuning
Approach for Performance and Energy
Optimization”, Sixth International
Conference on Green Computing and
Sustainable Computing (IGSC), 2015.

[12] Dongsun Kim and Sooyong Park,
“Dynamic Architectural Selection: A
Genetic Algorithm Based Approach”,
International Symposium on Search
Based Software Engineering, 2009.

[13] D. Sundar, B.Umadevi and Dr. K.
Alagarsamy, “An Optimized approach
for the Improvement of CMMI in Human
Resource Management Using Multi
Objective Genetic Algorithms”, Second
International conference on Computing,
Communication and Networking
Technologies, 2010. n

R E S E A R C H F RO N T

About the Authors
Dr. C Shoba Bindu [CSI-01174921], received her Ph.D degree in CSE from JNTUA, Anantapuramu, Andhra
Pradesh. She is currently extending her services as Professor in department of CSE, JNTUA. Her research
interests are in the areas of Mobile and Adhoc Networks, Network security, Data Mining and Cloud Computing.
She can be reached at shobabindhu@gmail.com.

E. Sudheer Kumar received B.Tech and M.Tech in Information Technology from JNTUA, Ananthapuramu,
India. Currently, he is Assistant Professor in the department of CSE, Sree Vidyanikethan Engineering College,
Tirupati, India. His research interests include data science, software engineering, software architecture, and
other latest trends in technology. He can be reached at sudheerkumar.e@gmail.com

Dr. K K Baseer [CSI-I1182542] received his PhD from JNTUA, Ananthapuramu, India. Currently, he is working
as Associate Professor in the department of Information Technology, Sree Vidyanikethan Engineering
College, Tirupati, India. His research interests include Software Engineering, Software Architecture,
Data Science, Information Retrieval System and other latest trends in technology. He can be reached at
kamalapuramkhajabaseer@gmail.com

R E S E A R C H F RO N T

(ADvERTISING TARIFF)
Rates effective from April, 2014

CSI Communications
COLOUR

Colour Artwork (Soft copy format) or positives are
required for colour advertisement

MECHANICAL DATA

Back Cover ` 50,000/- Full page with Bleed 28.6 cms x 22.1 cms
Inside Covers ` 40,000/- Full Page 24.5 cms x 18.5 cms
Full Page ` 35,000/- Double Spread with Bleed 28.6 cms x 43.6 cms
Double Spread ` 65,000/- Double Spread 24.5 cms x 40 cms
Centre Spread
(Additional 10% for bleed advertisement)

` 70,000/-

• Special Incentive to any Individual/Organisation for getting sponsorship 15% of the advertisement value.
• Special Discount for any confirmed advertisement for 6 months 10%.
• Special Discount for any confirmed advertisement for 12 months 15%.
• All incentive payments will be made by cheque within 30 days of receipt of payment for advertisement.
• All advertisements are subject to acceptance by the editorial team.
• Material in the form of Artwork or Positive should reach latest by 20th of the month for insertion in the following month.
All bookings should be addressed to :

Computer Society of IndiaTM

Unit No. 3, 4th Floor, Samruddhi Venture Park, MIDC, Andheri (E), Mumbai-400 093.
Tel. 91-22-2926 1700 • Fax: 91-22-2830 2133 | Email: hq@csi-india.org

 17
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

Pseudo Code Attack in Software Engineering
 S Hemalatha P C Senthil Mahesh

 Professor/CSE , Panimalar Institute of Technology Professor/CSE , Jeppiaar Institute of Technology

In recent technological development of hardware and software are relies on the software development.
Developing of software is depends on programming languages inventions. Programming languages
invention is adaptable to software metric calculation like line of code, code reduction, reusability etc.
During this metric calculation stages the different attacks can be performed to reduce the metric
values and delayed the proposal of software packages. There are many attacks are identified and
prevented in networks, this pseudo code attack is the novel method to perform increasing the metric
calculation in software coding. This article proposed the technique to introduce the pseudo code attack
and identifying the pseudo code attack present in the source code.

1. Introduction
Most software development

associations have some goal or desire
to produce secure software that
assures their products robustness
and availability. During the software
development, there is either flaws or
faults are introduced from the design of
the software or from the implementation.
Failures and particularly vulnerabilities
are maximizing the cost for the
developers and need them to spend
more time on software maintenance
instead of new features. Most of
the software developers depend on
testing to minimize their maintenance
cost and to generate software with
high availability and robustness.
Unfortunately, testing mostly focuses
on validating the proposed functionality
and not on identifying the vulnerabilities.

There are several DDOS attacks
are in the network field. These kinds of
attacks are trying to reduce the system
performance, in order to achieve
degradation of system aspects with
normal aspects.

The Pseudo code attack is the
new kind of DDoS attack. This pseudo
code attack is possible in software
development process. This article
discusses about the pseudo code attack
in DDOS. DDOS prevents the intended
usage of the software development.
The common DOS attacks are network
based which attempt to exhaust the
system resources. The source code
which does not constantly releases a

system resource might be explored
in the similar manner, resulting in a
consumption of resources.

The software development process
mainly focuses on developing of the new
and innovative software’s to the society.
When a new version is developed by the
software team, a new version is put in
to the functional point analysis. This
functional point analysis calculates
the number of read and writes cost
involved in the new version. This will
be compared with the older version to
check the quality of the new one. If the
calculated cost is less or equal to the
old version, then the developed team
will release the software.

From that, the Pseudo code attack
is new type of DDoS attack. This attack
is automatically installed in the system
memory. Whenever the functional point
analysis calls, the newly generated
segment code will be added and moved
to the original code. This results cause
in increasing the number of read and
write operations on memory. This
process will lead to show the FFP in
more cost. So the newly developed
segment is put it to wait for release and
evolutes the development state again.
This causes the delay in releasing of
software. This pseudo code is not like
a virus or any malware program. Hence
it cannot be identified by any antivirus
detection software.
2 Effects of Pseudo Code Attack

The pseudo code attacks are

installed in the system memory. It
affects the system performance in
diverse ways. With the arrival of pseudo
code attack, the system operations are
deviated from their normal working
procedure. The effects of pseudo code
attack are as follows:

The pseudo code attack reduces
the server performance as it is installed
in the system memory. It leads to
increased cost of Full Functional Points.
The pseudo code takes additional
storage in the system memory. Hence,
the disk storage space is also increased.
Consequently, this attack reduces the
disk speed of the system and causes
delay in reading.
3. Research Issues and Challenges

Developing a software security
requirements are complicated and
have some issues which maximizes
the difficulty of developing such
requirements. Some of the current
issues and challenges for software
developments are discussed as follows:
 � Security is continually changing:

The procedure for generating
requirements should be precise and
clear. Hence, the future security
requirements should research provides
insight into a new appearance of
software threat.
 � The security requirements should

be declared in a positive tone:
Generally, Security requirements

are declared in a negative tone

S E C U R I T Y C O R N E R

www.csi-india.org
 18

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

that formulates the validation and
verification more difficult . For instance,
a negative requirement might be “The
program shall not permit remote
exploits”, which is complex to validate.
The process of validating and verifying
that requirement might require testing
the program could not do, not what the
program should do.
 � Security is continually changing:

The procedure for generating
requirements should be precise and
clear. Hence, the future security
requirements should research provides
insight into a new appearance of
software threat.
 � The security requirements should

be declared in a positive tone:
Generally, Security requirements

are declared in a negative tone
that formulates the validation and
verification more difficult. For instance,
a negative requirement might be “The
program shall not permit remote
exploits”, which is complex to
validate. The process of validating and
verifying that requirement might require
testing the program could not do, not
what the program should do.
The security requirements for
developing the software should be
language and platform independent:

Any technique intended to provide
common requirements becomes
less practical when associated
with the particular language or
platform. Providentially, the software
requirements can be written with a
common tone to cover up all the possible
situations that a development might
face. Some of the requirements will be
less observable in certain languages, for
example, any language that abstracts
system memory management will
not have necessities for unsuccessful
memory allocation attempts, etc.
 � The security requirements should

be verifiable and testable for the
development process to work:
The standard idea behind the

re q u i re m e n t s - d r i v e n s o f t w a re
development contains generating the
requirements that can be established at
each stage of the development process.
It can be validated or tested during the
testing phase of software development .

Verification is done at each

stage after the requirements phase,
and assures that the criteria of each
requirement are correctly being attained
to that point in the development. The
requirement testing is done at the
end of the development stage during
the testing stage, and assures the
inclusion of the requirement. A security
requirement should be both verifiable
and testable for it to be probable to
track the progress of the requirement
throughout the development stages,
and test to assure the requirement
was incorporated into the software
development.
A development may only requisite
some software security requirements,
but not all:

The requirements will cover
up everything from system memory
to cryptography. But, some of the
applications may only require a subset
of those security requirements. A
procedure should exist so that the
security requirements desired for a
development can be selected based
on the non-security associated
requirements.

Due to these kind of attacks, there
are lot of issues are occurred during
the software development. In order to
formulate secure and scalable software,
an appropriate model required to be
developed. To overcome these issues,
the research focuses on developing a
model based on the cosmic FFP and
energy points analysis. It minimizes the
unwanted read and writes operations
occurred on the system. Based on
these approaches, a vulnerable DDoS
attack is prevented while developing the
software.
4. Micro Motivation

The software sizing and energy
points applied in software development
process. Also, the research issues and
challenges in this software sizing are
also discussed.
4.1 Software Sizing

Software size estimation is
important in providing a credible
software cost estimate. Hence,
selecting the suitable method by which
to estimate size is significant. In most of
the cases, the estimation risk depends
more on precise size estimates than on
some other cost-based parameter.

Therefore, it is significant that
software sizing can be done as
accurately and consistently as possible,
given the uncertainties intrinsic in size
estimation. Though, software sizing is
complex due to the number of reasons.

1. It is executed in a number of
different circumstances, some with
a huge deal of knowledge regarding
the system and some with about no
knowledge at all.

There are many alternatives for
the structure and language utilized to
articulate the design and requirements.

Usually, software projects are
a combination of reused, new, and
modified mechanisms. A sizing method
should be able to include all three
phases, even when the modification
and reuse take place in the design and
requirements as a substitute of just in
the program code.

Software sizing measures,
Software sizing measures are utilized to
normalize the other measures so that
suitable comparisons can be prepared
within or across the systems. Productivity
statistics cannot be calculated, without
a sizing measure. A sizing measure is
basic to any software measurement
program. During the estimation of cost
and schedule, the common use of sizing
measure is probable; there are many
other potentially precious applications,
together with earned value, risk
identification, change management and
progress measurement. Nowadays,
there are two software sizing measures
are greatly widely used: They are,
 � Source Lines Of Code (SLOC) and

 � Function Points (FP). Even
though, each measure has diverse
things and has very diverse
characteristics.

SLOC – It is a measure of the
size of the software system that is
formulated. It is extremely dependent
on the software technology used to
formulate the system design, structure
and how the programs are coded. Also,
there are numerous well-documented
issues and problems with SLOC. In
fact, Capers Jones declared that
anyone using SLOC is “consigning
professional malpractice.” In spite of
these issues, SLOC is still frequently
used by very professional and reputable

S E C U R I T Y C O R N E R

 19
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

organizations.
In contradiction to SLOC, Function

Points (FP) is a measure of distributed
functionality which is comparatively
independent of the software technology
used to expand the system. At the same
time as FP faces and solves many of
the issues inherent in SLOC, and it has
introduced a loyal following, it has its
own set of problems. Since, LOC and
FP have been the only broadly accepted
ways to size a software system; a
developer’s dimension choices have
been very inadequate. The SLOC and
FP measures are exclusively powerful
and useful. Each measure has its own
merits and drawbacks.
4.2 Energy Points

Most of the computer software
and hardware developers are focuses
on solving problems with minimum
storage space and maximum speed.
But energy use for computing is an
increasing concern. Some of the
steps to minimize the energy points in
software development are:
1. Run multiple application on shared

servers

2. Log less

3. Delete historic data

4. Compile interpreted languages

5. Reduce data translation among
components,

Here, Functional Points obtained
are mapped to Energy consume in order
to obtain the Energy Points.

The formula used to derive for
Energy Point Mapping is as follows:

ER = 13.3 μ w/k
EW = 6.67 μ w/k
EP = (R * ER + W * EW)
Where R is each read operation

in Function Point and ER is the energy
required for read operation.

Where W is each write operation
in Function Point EW is the energy
required for write operation.
5. Research Issues and Challenges

Software sizing and software
energy point’s process face many
challenges to attain an accurate and
proper estimate for many reasons.
Since, software is insubstantial rather
than the estimation procedure in
nature is not simple particularly with

the insubstantial products. One of
the major difficulties in the software
sizing is the availability of the data that
is required to verify the usefulness of
any suggested models, measures and
functional sizing approaches. Most of
the software sizing techniques was
based on the small amount of data.
Some of the techniques for instance
compute the size and cost based on 30
UML files. Hence, the resulted approach
in this situation does not have a high
reliability and it cannot be generalized.
There is an issue in the estimation
process in preserving the suitable and
proper dataset to check any kind of
sizing techniques, measures or any
cost models. It results a real problem
in enhancing the software estimation.
process. The nature of the development
process where all the software
requirements are known, moreover to
the requirement creep issue also the
correlation among the cost factors and
how each factor may affect the result of
the software sizing. Another challenge
is that there is no precise rules and
standard for the whole process of
software development. It is still in
adhoc stage that does not restricted
to the certain standard. Currently,
the functional size measurement is
performed manually and hence it is
time consuming. In order to speed up
the process and reduce the probability
of human errors, numerous attempts
are done to automate the functional
size measurement techniques. A set of
COSMIC related tools on the software
market and research community. But
still, it is necessary to identify the tool
vendors to fill the research gap analysis.
Hence, the proposed research focused
on developing a system based on the
cosmic FFP energy points for secure
software development.
6. Proposed Method for Energy

Point Estimation
In the software development

projects, estimated size and time is
the important measures of quality
assurance .Quality of software by
means of mean time between failure
and a number of bugs per line of
code. The measures are classified into
direct and indirect. Direct measures
are Cost, line of codes, speed memory
size and number of errors. Indirect

measures are Function (size), quality,
complexity, efficiency, reliability. In
the software development process
these metric is also getting affected
by means of denial of service attack
through micro motivation. This kind of
attack in software project level can be
identified by analyzing the energy point.
The energy point is calculated using the
functional point .Functional point plays
a vital role in estimating the quality of
the software. Developed software is
segmented into modules, each module
are taken for energy calculation.

This research work is mainly
focuses on between energy point to
functional point. Developed modules
are the main sources in functional point.
Functional point measurement is used
to identify the entry, exit , read and write
operation of the modules. This output
is in numerical value, which are passed
to the energy point calculation. Energy
point calculation is produces the read
and write energy in developed modules.
This read and write energy. is used to
identify the pseudo code DDoS attack
present in the modules or not. MCRose
cosmic FFP measurement is used for
analysis the energy point calculation.
The modules are passed to MCRose in
real time , the entry, exit and number
of read /write of modules is taken for
energy calculation.

Joule Meter : Joule meter
estimates the energy usage of a VM,
computer, or software by measuring
the hardware resources (CPU, disk,
memory, screen, etc.) being used and
converting the resource usage to actual
power usage based on automatically
learned realistic power models. Joule
meter can be used for gaining visibility
into energy use and for making several
power management and provisioning
decisions in data centers, client
computing, and software design.

The technology is especially
helpful for IT leaders managing power
management settings, PC users who
wish to get fine grained visibility into
their computing energy use, and
enthusiast developers who wish to
leverage power measurer for optimizing
their software and hosted service design
for power usage.

The Joule meter modelling tool
can be used to optimize power use in

S E C U R I T Y C O R N E R

www.csi-india.org
 20

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

multiple scenarios. The measurement
of VM power allows developing power
budgeting techniques for virtualized
data centers.

Managing and tracking PC sleep,
combined with remote wakeup, allows
optimizing desktop power consumption
in enterprise buildings. Separating
the impact of hardware components
on battery life allows .Users to trade-
off power management settings for
improving battery life and enables
developers to make appropriate
design trade-offs for their software
applications. Figure 6.2 shows the
snapshot of the Joule meter.

The read and write energy

calculation from the joule meter can be
used to identify the pseudo code attacks
present in the system or not.
7. Conclusion

Among the various threats
to networks, Distributed Denial of
service (DDoS) attacks have evolved
to be a major threat to the availability,
accessibility and operations of the
many Internet based Services. Recent
researches claim that thousands
of such attacks are launched every
week, causing severe damage to both
commercial and governmental sites. In
this thesis a new technique is described
to detect and prevent DDoS.Pseudo

code attack is also p[lay a vital role in
Software engineering to overcome the
DDoS Attacks, which can be detected
using joule meter.
References
[1] Yau, DK, Lui, J, Liang, F & Yam, Y 2005,

‘Defending against distributed denial-
of-service attacks with max-min fair
server-centric router throttles’, IEEE/
ACM Transactions on Networking
(TON), vol. 13, no. 1, pp. 29-42.

[2] Ye, B Qing, S, Okamoto, T & Zhou, J
2001, ‘Defeating Denial-of- Service
Attacks on the Internet’, in Information
and Communications Security, Springer
Berlin Heidelberg, vol. 2229, pp. 304-
315.

[3] Yu, S, Zhou, W, Doss, R & Jia, W
2011, ‘Traceback of DDoS attacks
using entropy variations’, Parallel and
Distributed Systems, IEEE Transactions
on, vol. 22, no. 3, pp. 412-425.

[4] Yu, Y, Li, K, Zhou, W & Li, P 2012,
‘Trust mechanisms in wireless
sensor networks: Attack analysis and
countermeasures’, Journal of Network
and Computer Applications, vol. 35, no.
3, pp. 867-880.

[5] Zahariadis, T, Leligou, H, Karkazis,
P, Trakadas, P, Papaefstathiou, I &
Vangelatos, C 2010, ‘Design and
implementation of a trust-aware
routing protocol for large wsns’,
International Journal of Network
Security & Its Applications (IJNSA), vol.
2, no. 3, pp. 52-68.

[6] Zayaraz, G, Thambidurai, DP,
Srinivasan, M & Rodrigues, DP 2005,
‘Software quality assurance through
COSMIC FFP’, ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5, pp.
1-5.

n

Fig. 6.1 : Joule Meter

About the Authors

Dr. S Hemalatha Professor/CSE , Panimalar Institute of Technology

Dr. P C Senthil Mahesh Professor/CSE , Jeppiaar Institute of Technology

S E C U R I T Y C O R N E R

 21
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

The Role of Software Engineering
 Hardeep Singh Parminder Kaur

 Dept of Computer Science, Guru Nanak Dev University, Amritsar Dept of Computer Science, Guru Nanak Dev University, Amritsar
 hardeep.dcse@gndu.ac.in parminder.dcse@gndu.ac.in

1. Introduction
Development of software was a

simple activity in earlier days. But as
technology improves, software becomes
more complex and size of software
projects becomes larger. To deal with
complexities, Software Engineering (SE)
provides various methods and enables
the development of a reliable product
with desired quality. The notion of SE
was first introduced in 1968, defined
as ‘the application of a systematic,
disciplined and quantifiable approach
to the development, operation and
maintenance of software [IEEE][1,2].
The main aim of the SE is to follow
a systematic approach to build high
quality software within specified time
and budget. The absence of SE leads to:
 � Complex Code.
 � Inconsistent User Interface.
 � No Systematic Testing Strategies.
 � Lack of methodical, quantifiable

methods.
 � Requirement gathering remains

incomplete.
 � Lack of systematic methods further

leads to weak or too complex
architecture.

2. SE Layers
SE works in different layers i.e.

Process Layer, Method Layer and Tools
Layer as shown in Fig. 1.

Tool

Method

Fig. 1 : Layers of Software Engineering

The processlayer defines an outline
for a set of key process areas that must
be acclaimed for effective delivery of
software on time. The method layer
covers requirements analysis, design,

coding, testing, and maintenance
phase of the software development.
The tools layer provides computerized
or semi-computerized support for the
process and the method layer. Tools
can be integrated in such a way that
one tool can use information created
by another tool, known as Computer-
Aided Software Engineering (CASE).
CASE tools helps in designing and
documenting traditional-structure
programming techniques. For example,
two prominent technologies using
CASE tools are PC-based workstations
and application generators that provide
graphics-based interfaces to automate
the development process.

3. Types of Software
Now-a-days, variety of software

is available in the market as shown in
figure 2. System Software, Application
Software, Engineering/Scientific
Software, Embedded Software, Product-
Line Software, Artificial Intelligence
Software, Web Applications, Ubiquitous
Computing, Netsourcing, Open-Source
Software are few types of the software.

Software development takes place
in various phases such as:
 � Requirement’s Engineering
 � Software Design
 � Software Coding

 � Software Testing
 � Software Implementation
 � Software Maintenance

The above said various SD phases
can be accomplished by selecting one
of the available software development
process models as shown in Figure 3.
These process models can be selected
according the type of application which
is going to develop. The applications,
which are small in size and with well-
defined requirements, are well handled
by Waterfall Model [3-4]. When developer
is not sure about the requirements,
then one of the Prototyping Models
either Evolutionary or Incremental
Prototyping is used [5]. Spiral model is
used when risk identification as well as
risk evaluation is required in each phase
of the development [4][6-7]. Large as
well as complex programs are also
handled by Spiral Process Model. Today,
development is done with Iterative
and Incremental Model i.e. every
new release of software development
takes care about change in demand.
Agile Development [8], RAD Process
Model [9], Extreme Programming
[10], Component-based development
[11] are some software development
methodologies through which one
can develop a high quality product in a
desired time schedule.

A R T I C L E

Product Line
Software

Scientific
Software

Engineering
Software

Application
Software

System
Software

Web Application
Software

AI Software

Open Source
Software

.COM Marketing
Software

Net
sourcing

Software

Fig. 2 : Types of Software

www.csi-india.org
 22

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Incremental & Iterative Model

Waterfall Model

Prototyping Model

Spiral Model

V Model

Agile Model

RAD Model

Big Bang Model

Software
Development

Process
Models

Figure 3: Different Types of Software Development Process Models

SE also deals with two basic
objectives- High Quality and Low Cost.
In order to control quality and cost, the
processes leading to the development
of software need also be controlled.
However, as in other engineering
disciplines, anything which cannot
be measured, cannot be controlled.
Therefore, a very significant aspect
of the Software engineering is the
software measurements. It is dealt with
in two dimensions i.e. Software Metrics
and the quantitative measurements.
Most often, these two terms are
interchangeably (Fig. 4).

Size-Oriented Metrics
 � Lines of Code(KLOC)
 � Defects per KLOC
 � Cost per KLOC

 � KLOC per person- month

Function-Oriented Metrics
 � Function Point(FP)
 � Defects per FP
 � Cost per FP

 � FP per person-month

Software
Metrics

Fig. 4 : Software Metrics

In Literature, there are various
software metrics suites discussed
by different Software Engineers e.g.,
“C.K. Metric Suite” by Chidamber and
Kemerer [12], “The MOOD Metrics Set”
by Abreu [13], Lorenz and Kidd Object-
Oriented Metrics suite [14], McCabe

Cyclomatic Complexity [15].
4. Software Engineering: The Future

As the usage and the demand
of the software increase, the size
and the complexity of the software
systems are likely to increase as well,
most probably in the exponential
manner. This possesses a tremendous
challenge to the practitioners and
researchers of software engineering.
The major difficulty encountered is
that the software processes are not
scalable. As the size and complexity
increase, the software processes need
to be expanded in a nonlinear fashion.
Moreover, not many professional are
either ready or trained to handle such
processes.

Another situation which is likely to
emerge is the integration of systems
with one another leading to a situation
which is termed as System of Systems
(SoS) or Ultra Large Systems (ULS).
This is multi-dimensional challenge
as we need to have new processes,
methods and tools to deal with these
types of systems.

The changing computing
environment presents a challenge for SE
Computing. As steadily the computing
is being shifted to cloud platform, the
demand for scalable, reliable and secure
applications is on the rise. The Service-
oriented Architecture (SOA) is going to
play an important role in determination
of the nature of the application on this
platform in the times to come.

The integration of new technologies
like Social Networks, Cloud Computing,
Big Data Analytics and Mobility is giving
rise to new IT infrastructure (SCAM).
Since this infrastructure is going to be
employed by most of the organisations,
the applications need to be built and
maintained and this SCAM Stack, for
which, again, we need a change in the

orientation with which we develop and
maintain our application.
References
[1] “IEEE Standard Glossary of Software

Engineering Terminology,” IEEE std
610.12-1990, 1990

[2] Ian Sommerville, “Software Engineering
(9th Edition)”, Pearson Education, 2010

[3] Royce, Winston (1970), “Managing
the Development of Large Software
Systems” (PDF), Proceedings of IEEE
WESCON, 26 (August): 1–9

[4] Jalote, Pankaj, “An Integrated Approach
to Software Engineering, Third Edition,
Springer, Narosa Publishing House, 2016

[5] Smith MF, “Software Prototyping:
Adoption, Practice and Management”,
McGraw-Hill, London, 1991

[6] Boehm, B, “Spiral Development:
Experience, Principles, and
Refinements”, Special Report CMU/
SEI-2000-SR-008, July 2000

[7] Boehm B, “A Spiral Model of Software
Development and Enhancement”, ACM
SIGSOFT Software Engineering Notes,
ACM, 11(4):14-24, August 1986

[8] Larman, Craig (2004). Agile and
Iterative Development: A Manager’s
Guide. Addison-Wesley. p. 27. ISBN
978-0-13-111155-4

[9] Martin, James (1991). Rapid Application
Development. Macmillan. pp. 81–90.
ISBN 0-02-376775-8.

[10] “Extreme Programming” USFCA-edu-
601-lecture

[11] Crnkovic, Ivica, et al. “A classification
framework for component models.”
Software Engineering Research and
Practice in Sweden (2007)

[12] Chidamber, S. R. and Kemerer, C. F.,
“A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software
Engineering, vol. 20, 1994.

[13] Abreu, F. B. e., “The MOOD Metrics Set,”
presented at ECOOP ‘95 Workshop on
Metrics, 1995.

[14] Lorenz, M. and J. Kidd, Object-Oriented
Design Metrics, Prentice- Hall, 1994.

[15] McCabe, T., “Cyclomatic Complexity
and the Year 2000,” IEEE Software, May
1996.

n

A R T I C L E

 23
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

About the Authors
Hardeep Singh is working as a Professor in the
department of Computer Science at Guru Nanak
Dev University Amritsar, India. He has around 100
research papers in the International/ National
Journals as well as Conferences. His research
interests include Software Engineering, Open-Source
Systems, Web Engineering, Information Systems,
Service-oriented Architecture and Cloud Computing.

Parminder Kaur is working as an Asst. Professor in
the Dept. of CS at Guru Nanak DevUniversity Amritsar,
India. She has completed her Ph.D. from Guru Nanak
Dev University Amritsar in the year 2011. She has
around 35 research papers in the International/
National Journals as well as Conferences. Her
research interests include Software Engineering,
Web Engineering, Semantic Web, Open-Source
Software and Software Security.

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

A R T I C L E

Formal Methods in Software Engineering
 A Sowmya Mitra

 Scientist, DRDO, Hyderabad

Software based applications are
becoming ubiquitous in several mission
/ safety critical systems and main
challenge is to provide formalism,
techniques and tools to optimize rigor
despite system complexity. In safety
critical / mission critical systems
failure might result in serious impact
to an organization and even can cause
catastrophes. Rigorous verification
and validation is indispensable.
Conventional V&V methods include
code walkthrough/code inspection,
static and dynamic testing. However,
these traditional methodologies when
carried out rigorously can “Detect the
presence of Bugs” but never “Prove
the absence of Bugs”. As a practical
alternative, systems / subsystems
need to be verified with mathematical
proofs termed as “Formal Methods”.
Formal methods provide a foundation
for special environments leading to
models that are complete, consistent
and unambiguous. Formal methods
can prove “Always or Never” and major
approaches include Theorem Proving
and Model Checking.
1. Introduction

Formal Methods : Formal
methods are the use of mathematically
rigorous techniques and tools for the
specification, design and verification
of software and hardware systems.
By mathematically rigorous we
mean specifications are well formed
statements in mathematical logic
and formal verification are rigorous
deductions in that logic. The various
phases in which Formal Methods can
be applied to the chosen software are
as follows:

 3 Defining Requirements
 3 Modelling: Mathematical

representation of a man-made
system most suitable for the
application

 3 Formal Specification:
Characterization of an existing

system expressed in formal
specification language

 3 Formal Analysis / Formal
Verification: Model Checking
& State Exploration / Theorem
Proving & Proof Checking

 3 Documentation
The principal distinction between

the two approaches stems from the
choice of formalism used in reasoning
process.

Theorem Proving: Theorem
proving is one of the key approaches
to formal verification. Theorem proving
reasons about program P correctness in
terms of pre and post conditions based
on Hoare Logic, i.e. {фPRE} P {фPOST}.
This formula can be read as “if property
ф PRE holds before program P starts,
ф POST holds after the execution of P.
In Hoare’s calculus, axioms and rules
of inference are used to derive ф POST
based on ф PRE and P.

These techniques are most
powerful where properties are written in
first order predicate logic. Correctness
of properties is established through set
of stored theorems. There are many
theorem provers in active use today. The
popular ones include ACL2, Coq, HOL,
Isabelle, PVS, FRAMA-C etc. A common
aspect of all these theorem provers is
that they support complex logics and
are highly expressive. However, the
expressive power lacks automation and
there is no fully automatic procedure to

deduce a given logic. In such scenarios,
user intervention is required in terms
of assistance to theorem prover in
its search for a proof. The guidance
takes the form of setting intermediate
lemmas, axioms, logical predicates,
selecting heuristics and strategies at
various steps of the proof which makes
theorem proving technique a highly
human intensive job.

Model Checking: Model checking is
an algorithmic method for determining
if a model M of a system satisfies a
correctness specification P. A model
of a program consists of states and
transitions. A specification or property is
a logical formula capturing the design
intent. A model checking algorithm has
two main inputs – a formal property in
a property specification language, and
a finite state machine representing
the implementation. The role of the
algorithm is to search all possible paths
of the state machine for a path which
refutes one or more properties. If one
exists, then the path trace is reported
as the counter-example. Otherwise the
model checker asserts that the property
holds on the implementation. This kind
of verification involves establishing
that the model semantically entails the
specification i.e. M╞P.

Some of the software Model
Checking tools are SPIN, BLAST,
SATABS, CBMC etc. Figure 1 illustrates
an overview of Formal Methods.

Engine

Formal Properties P

 Specification
 Valid

 InvalidImplementationM
Fig. 1 : Formal Methods – Overview

www.csi-india.org
 24

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

2. Methodology:
Using formal methods to prove

the functional correctness of any logic
as per the specifications, a step by
step procedure is mandatory. These
steps can be generalised irrespective
of the techniques used to reason
about the correctness. Methodology at
work assumes that the model of the
implementation is auto generated by
the tool under consideration and hence
modelling the program under test is not
considered here. The three basic steps
are as follows:

 â Step 1: Requirement Analysis:
Detailed requirement analysis is
the first and the foremost important
task where sound domain
knowledge about the system is
a pre-requisite. Requirement
analysis can be represented in any
semi-formal notation. The outcome
of this step results in identifying the
mapping between the input state
vector and the expected outputs.
This forms the basis to model
formal specifications.

 â Step 2: Modelling Formal
Specifications: This step involves
specifying the requirements
analysed in the previous step using
formal notation as per the syntax
and semantics of the specification
language used by the tool under
consideration.

 â Step 3: Reasoning the correctness
of the code w.r.t the formal
specifications. Given the code
and the specifications, the tool
carries out reasoning about
the correctness of code for its
specifications.
The subsequent sections describe

Theorem Proving and Model Checking
techniques with specific tools used.
3. Theorem proving using FRAMA-C

FRAMA-C: FRAmework for Modular
Analysis of C is a tool for static analysis
of C programs. FRAMA-C platform
gathers several analysis techniques into
a single collaborative framework. It is
built upon a set of plug-ins like Weakest
Precondition (WP), Value Analysis (VA)
to perform static verification. The WP
plug-in uses weakest precondition
computations to generate proof
obligations. FRAMA-C uses its own

formal specification language namely
ANSI/ISO C Specification Language
(ACSL) to express the behavioural
properties of C programs. To formally
prove the properties, proof obligations
are submitted to external automatic
theorem provers.

ACSL is used to model function
contracts. A contract is an “opaque”
specification of function behaviour.
Contract of a function defines

 3 What the function requires from
the outside world

 3 What the function ensures to the
outside world

 3 provided the “requires” part is
fulfilled

3.1 A small example
ACSL is used to model function

contracts for given C code. The
below snippet describes pre and post
conditions modelled for foo function.

The function takes an integer value
as an argument and returns a negative
or positive value based on value of x.
The precondition states the range of x
(-2n-1 to 2n-1 -1) with “requires” function
contract. The post condition describes
result w.r.t integer value using
“ensures” contract.
3.2 Support for Modular Verification

Theorem proving strongly supports
modular verification which can be
used to model hierarchical function
contracts. As per the principles of
assume guarantee reasoning, in
modular verification, the pre and post
conditions of caller and callee have
dual roles in callers proof. Figure 2
illustrates the principle used in modular
verification and Fig. 3 analysis flow in
FRAMA-C environment.

Assumes:
Pre-conditions of itself
Post-conditions of callee

Ensures:
Pre-conditions of callee
Post-conditions of itself

Main Module
(Caller)

Sub-Module1
(Callee)

Sub-Module2
(Callee)

Fig. 2 : Modular verification

Function Contracts + C Program
(ACSL Annotated C code)

Proof Obligations Verification Conditions
Generation

FRAMA – C
Environment

Using Theorem Prover
(Alt_Ergo)

Based on WP calculus

Fig. 3 : Analysis Flow

4. Model checking using CBMC
CBMC, a bounded program analysis

tool for C programs formally verifies
ANSI-C programs and checks the
properties like pointer safety, division by
zero, array bounds and user-provided
assertions. CBMC forms a transition
relation for a program and transforms
it into SSA (Static Single Assignment)
form and unbound to a fixed length. The
specifications are also handled similarly
and the final formula consisting of the
conjunction of the program SSA and the
specification negation is fed to a SAT
(Satisfiability) solver. The SAT solver
checks for satisfiability, if the resulting
formula is satisfiable, a counterexample
is produced, else verification success
is reported. It allows user input to
be modelled using non-determinism
(nondet()) so that a program can be
checked for a set of inputs rather than
a single input. Figure 4 shows the
Analysis flow for CBMC.
4.1 CBMC constructs for property

verification
CBMC uses CPROVER primitives

for modelling user defined assertions.
Nondeterminism: It is desirable to

analyze C programs for any choice of
inputs. In CBMC, inputs are therefore
modelled by means of nondeterminism,
where the values of input are not
specified. Example: int nondet_int();

Assumes & Assertions: CBMC
assumptions, expressed as CPROVER_
assume, restricts the program traces
that follow the assumptions. It takes a
Boolean expression.

The assert statement, expressed
as CPROVER_assert takes a Boolean
expression as argument. CBMC checks

int foo (int x) // C Code

{ if (x <0) return –x;

 else return x; }

/*@ requires (x >= -2147483647); // precondition

ensures \result >= 0; // postconditions

ensures x < 0 ª \result == -x; // postconditions

ensures x >= 0 ª \result == x; // postconditions

A R T I C L E

 25
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

whether this condition is true for
each run of the designed code. If the
condition is true for each run, then it
reports Verification Successful.
4.2 A simple example
 int main()
 {

int a ,b;
__CPROVER_assume(0 <= a <=
5);
__CPROVER_assume(0 <= b <=
6);
__CPROVER_assert(0 <= a+b <=
11, “Success”);

return 0;
 }

In the above code value of ‘a’ lies
between 0 to 5 , b from 0 to 6 and hence
assertion ‘a+b’ displays verification

successful.

5. Conclusions
Formal method approaches

namely Theorem Proving and Model
Checking as an alternative approach
to conventional testing methods
greatly enhance software reliability.
Corner case bugs for critical modules
of Mission / Safety critical software
could be detected and could prove the
absence of errors.

However, in spite of advances in
the two key methodologies, reasoning
about the correctness of floating point
programs is still challenging. Inherent
large input space of floats leading
to state space explosion stands as
a bottle neck for model checking
methodologies. On the contrary,

lack of automated theorem provers
for discharging proof obligations for
floating point properties makes it tough
to apply Theorem Proving methods for
floating point program verification.
6. References
[1] The Science of Programming – David

Gries
[2] Principles of Model Checking – Christel

Baier & Joost-Pieter Katoen
[3] A survey of automated techniques for

formal software verification – Silva,
Vijay D., Daniel Kroening & George
Weissenbacher

[4] CPROVER User Manual – Kroening, D.,
& E. Clarke

[5] Practical Introduction to FRAMA-C –
David M ENTRE

[6] ACSL by Example – Hans Pohl, Jens
Gerlach

n

A R T I C L E

Kind Attention:
Prospective Contributors of CSI Communications

Please note that Cover Theme for April 2017 issue is Big Data Analytics. Articles may be submitted in the categories such as: Cover Story,
Research Front, Technical Trends, Security Corner and Article. Please send your contributions by 20th March, 2017.

The articles should be authored in as original text. Plagiarism is strictly prohibited.

Please note that CSI Communications is a magazine for members at large and not a research journal for publishing full-fledged research
papers. Therefore, we expect articles written at the level of general audience of varied member categories. Equations and mathematical
expressions within articles are not recommended and, if absolutely necessary, should be minimum. Include a brief biography of four to six
lines, indicating CSI Membership no., for each author with high resolution author photograph.

Please send your article in MS-Word format to to Associate Editor, Prof. Prashant R. Nair in the email ids csic@csi-india.org with cc to
prashant@amrita.edu

(Issued on the behalf of Editorial Board CSI Communications)

Prof. A. K. Nayak
Chief Editor

www.csi-india.org
 26

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

About the Author

Mrs. A Sowmya Mitra (CSI-1510343) pursued her B.S in Information Systems from BITS, PILANI and is presently working as
a scientist in Software Quality Assurance group in DRDO. Her areas of interest are Software Engineering, Software testing,
IV&V and Formal Methods.

A R T I C L E

Real – Time System: A challenge for Testers
 Nancy Goel Shaily Jain

 Assistant Professor in Chitkara University, Himachal Pradesh Associate Professor in Chitkara University, Himachal Pardesh

Testing of a Real-Time System (RTS) is a big challenge for skilled and experienced Testers. Design
issues majorly affect the testing strategies and testability of the system. This article gives a brief
introduction to some of these issues and challenges faced by testers during testing Real-Time System
than testing non Real-Time System(non RTS).

I. Introduction:
Time constraints are a big

parameter in testing RTS though non
RTS principles are also applicable for
RTS. There are other issues related to
hardware and software design decision.
As we know that Hardware and Software
design decisions have an intense effect
on testing strategies of the system.
There are twenty key areas in Test
Process Improvement (TPI) and one of
them defines that to involve testers at
the earliest stage of project results in
focus on testability [1]. So, it is required
that testers and designers should work
together as early as possible in the
development process, resulting in high
quality product.
II. Terminology used and basic

concepts:
Real Time System: Many systems

such as computer, including most
RTS can be viewed in Figure 1. In this
figure event stands for input and task
stands for initiating a computation. This
produces a result after abort. A task or
job with respect to Real-time is a task
that must be executed or accomplished
at meant time [2] and completes before
the deliberate point of time known as
deadline.

We include the value domain and

the time domain both as an important
factor to define RTS. We have different
classes (soft, firm, hard essential and
hard critical) of RTS based on cost of
missing a deadline [3]. While designing
RTS the type of events or different
events and its frequency should be
considered. An event can be of periodic
type, sporadic or aperiodic type. A load
hypothesis is also calculated on the
basis of terms of types and frequencies
of the events [2].

Testing: Dynamic execution of test
cases hold assessing and increasing
reliability [4] as its two main aspects
[5] . Testing itself defines assessing
the reliability, based on selecting
the test cases; executing them on
operational distribution and supervising
the number of confront failures. The
failures are analyzed and the reason
behind it known as fault [5] is removed
thereby the reliability is supposed to
increase. There are different testing
methods (e.g. Boundary value analysis,
State-base testing, Equivalence
partitioning, Syntax testing [6])
which helps in generating test suites
containing many test cases primarily
before uncovering failures.

A good example where same
strategies has been used for testing

the value domain in RTS as used in
non RTS is the DOI187b standard for
testing avionics systems[7]. RTS need
to be tested in both temporal domain
and value domain [8] which is the main
challenge in testing. Testing in temporal
domain means input should be given to
the test object at an accurate moment
and we need to control the temporal
state of the test object at the beginning
of test execution. The result timing must
be examined thoroughly because there
is a probability of non-determinism
also.

Testability depends upon two
central concepts [8] known as
Observability i.e. utility provided by
the system to detect what the system
does, how and when it does it, and the
other concept known as Controllability
i.e. utility accessible to the user to
command the execution or re-execution
of a test case. A system’s testability
characterize the features of software
needed for validating the software [9].
III. Factors affecting the design of a

RTS:
1. Scheduling: Sometimes more than

two jobs or tasks will be possible
to execute simultaneously in RTS.
So there must be a sequence of
job execution based on some set of
rules known as Scheduling. It can
be either dynamic where there is
execution done without any prior
calculation and conflict of jobs
could be solved with set of rules
using priority approach known
as preemption; or it can be static
where execution of job is done with
prior calculation and is cyclic [10].

2. Design pattern: For RTS we
Fig. 1 : Simple model of a computer system.

Environment

Computer
System

event

Task execution

result

 27
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

have two patterns such as Time-
triggered and Event-triggered [8].
The main difference between these
two is the performance which
occurred when communication
between RTS and environment
takes place. A Time-triggered
system (T-t system) is explained
in figure 2 given below that it
is implemented by polling and
uses static scheduling. Here
overburden conditions cannot be
handled because communication
of systems with its environment
is done at already defined areas
in time. In this system evaluated
outcome will not be moved back
to the environment until next
communication point.
In an Event-triggered system (E-t

system) as shown in figure 3 given
below, an event can be done at any time,
and an evaluated outcome can be moved
to the environment at the same time. It
may face overburden conditions so it
is designed to handle such conditions
dynamically. Designers should keep it
in notice that deadlines can be missed,
so design the system accordingly to
decrease the damage level. It is critical
to promise for a low level of service in
such systems.
A. There are many contradictions

in values of various properties
for Time-triggered and Event-
triggered systems both. An
overview of how these two are in
conflict with each other is shown in
figure 4 given below.

TT Systems

Testability
Predictability

Flexibility
Efficiency

ET Systems

Fig. 4 : Trade-off between testability/
predictability and flexibility/efficiency for

the two design paradigms

While performing testing in T-t
systems, Controllability is improved as
the tester only need to know about for
which observation time period an event
is to be initialized to the system due to
static scheduling (jobs to be executed in
same order). Whereas in E-t systems,
dynamically order of job execution in
done which makes testing more hard
and results may vary. So, we can say
that here testing should not be done
with systematic coverage exploration

and instead we must adopt statistical
testing approach with customize loads.

Flexibility can be obtained in E-t
systems because of its ability to handle
overburden and any change in the
system or its parts successfully disables
all prior test outcomes. Whereas any
type of modification in static scheduling
is not sensible. So, T-t systems are not
a good choice as it may results in re-
calculation, re-testing, and sometimes
needs to redesign the systems.

Efficiency of R-T system can be
achieved by measuring the difference
between worst case and average case
execution time. Here we consider
sporadic jobs. These jobs are scheduled
as periodic in T-t system. So we need
to measure the difference between its
worst case and average case execution
time. If it is less or differ more then
there is resource wastage and that
remaining time is not useful. But in
case of E-t systems sporadic jobs are
scheduled on their occurrence. Here
either an execution of more critical job
is done by preempting the currently
executing job or less critical job has to
wait than the current job resulting in
difference between its worst case and
average case execution time. Then this
will give outcome as higher efficiency
and the remaining time may be used for
execution of less critical job by dynamic
scheduling.

Predictability of a RTS has been
increased in T-t system due to negligible
order of events and static scheduling.
Here execution of job is pre-determined
and this property is very important
with respect to hard critical RTS as
these systems require more confidence
regarding its working in all conditions.
Whereas due to dynamic scheduling,
E-t system decreases the predictability
results in making regression testing
harder. That is why statistical test
methods are adopted for E-t system.
B. various Tools attributes:

It is very difficult to obtain a trading
testing tool for automatic test execution
of RTS. One of its reason is the system
might be under Black Box testing where
support on time is must. Embedded
systems, Specialized application fields
with particular requirements are
reasons resulting hard to exist such tool
that can bear the new technology [11].

Fig. 2 : Observation and reaction to an event in a time-triggered system.

event

Task execution

result

Fig. 2 : Observation and reaction to an event in a time-triggered system.

event

Task execution
Time

result

A R T I C L E

www.csi-india.org
 28

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

 � A tool must have an attribute of
measuring how much part has
been taken by it in examining when
the system was under testing.

 � The timing of the input is important
for RTS and an introduction of an
event is the required feature of a
testing tool.

 � The input should be released to the
system under test at a predefined
time.

 � Tool either supports time-stamped
or timers for the events to take
place.

 � There should be clock
synchronization in case of a tool for
automatic test execution. Having a
real-time network, synchronization
can be achieved either with a global
clock used as a master clock
frequency, or the local clocks are
used with a clock synchronization
protocol.

 � Advanced tools must support
resynchronization of the test
execution whenever a failure has
been detected. Such tools can take
actions to re-install the system
under test into a familiar state and
restart the test case execution at a
point from test suite after the failed
test case.

Iv. Conclusion:
Testing team must participate in

design decisions to make system more

flexible.
This is a big challenge for non

Real-Time Systems and Real-Time
Systems both to diagnose and re-
execute the system under test after
failure [12].This means testing in RTS
is more challenging due to the reason
of temporal and value domain test
cases which makes Observability and
Controllability both harder to get.
Temporal domain’s testing of RTS also
affects prospective tools for automatic
test execution which is essential for an
efficient test.
References:
[1] T. Koomen and M. Pol, Test Process

Improvement A practical step-by-step
guide to structured testing, Addison-
Wesley and ACM Press, ISBN 0-201-
59624-5, 1999

[2] H. Kopetz and P. Veríssimo, Real Time
and Dependability Concepts, Chapter 16
in Distributed Systems, second edition,
Addison-Wesley, edited by S. Mullender,
ISBN 0-201-62427-3, 1993

[3] C.D. Locke, Best-Effort Decision Making
for Real-Time Scheduling, Technical
Report CMUCS-86-134, Department of
Computer Science, Carnegie-Mellon
University, USA, 1986

[4] P.G. Frankl, R. G. Hamlet, B. Littlewood,
and L. Stringini, Evaluating Testing
Methods by Delivered Reliability, IEEE
Transactions on Software Engineering,
Vol. 24, No. 8, Aug., 1998

[5] BS 7925-1 Software Testing Vocabulary,
British Standardisation Institute, 1998

[6] B. Beizer, Software Testing Techniques,
second edition, Van Nostrand Reinhold,
ISBN 0-442-20672-0, 1990

[7] DO-178B Software Considerations
in Airborne Systems and Equipment
Certification, RTCA Inc, 1828 L Street
NW, Suite 805, Washington, DC 20036,
1992, URL: http://www.rtca.org

[8] W. Schütz, The Testability of Distributed
Systems, Kluwer Academic Publishers,
ISBN 0-7923-9386-4, 1993

[9] International Standard ISO/IEC
9126. Information technology –
Software product evaluation – Quality
characteristics and guidelines for
their use, International Organization
for Standardization, International
Electrotechnical Commission, Geneva

[10] B. Lindström, J. Mellin, and S.F.
Andler, Testability of Dynamic Real-
Time Systems, Proceedings of Eighth
International Conference on Real-Time
Computing Systems and Applications
(RTCSA2002), Tokyo Japan, 18-20
March 2002, pp. 93-97

[11] L. Hayes, Automated Testing Handbook,
Software Testing Institute; ISBN: 0-970-
74650-4, 1995

[12] R. Iorgulescu and R.E. Seviora. A Method
for Continuos Real-time Supervision.
Software Testing, Verification and
Reliability, Vol. 7, pp 69-98, 1997

n

About the Authors
Ms. Nancy Goel is an Assistant Professor
in Chitkara University, Himachal Pradesh.
She can be reached at nancy.goel@
chitkarauniversity.edu.in.

Dr. Shaily Jain [CSI-N1270613] is an Associate
Professor in Chitkara University, Himachal
Pradesh. Her interest areas are data mining,
networks, IOT and embedded systems. She can
be reached at shaily.jain@chitkarauniversity.
edu.in

A R T I C L E

Benefits for CSI members: Knowledge sharing and Networking
 � Participating in the International, National, Regional

chapter events of CSI at discounted rates
 � Contributing in Chapter activities
 � Offering workshops/trainings in collaboration with CSI
 � Joining Special Interest Groups (SIG) for research,

promotion and dissemination activities for selected

domains, both established and emerging
 � Delivering Guest lecturers in educational institutes

associated with CSI
 � Voting in CSI elections
 � Becoming part of CSI management committee

 29
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

Risk Management in Effort Estimation of
Agile Methodologies

 S Rama Sree Ch. Prasada Rao
 Prof. in Dept. of CSE & Vice Principal at Assoc. Prof in the Department of CSE at
 Aditya Engg. College, Surampalem, Andhra Pradesh Aditya Engineering College, Andhra Pradesh

Risk management is one of prominent responsibility of the software project management. Software
Risk Management is very essential from the inception of the software project to the deployment and
retirement of the project. A software project is considered to be risky due to uncertainty of stakeholder’s
requirements, in accurate effort estimations, poor communication, etc. Most of the projects fail or
get cancelled due to non-identification of uncertain future events called risks and in accurate effort
estimations. There is a direct correlation between effort estimation and risk management. Effort
estimation should provide information on likelihood of project risks. It takes the input as output of other
risk analysis activities. The objective of this article is to provide some possible risk driven factors while
estimating the software effort in agile methodologies and try to provide the mitigation techniques.

Agile Methodologies:
Now-a-days, most of the companies

have been transforming from traditional
process to modern process models. The
main goal of any process model is to
deliver the project with in time, budget,
high quality and which can meet all
specifications given by the customer.
The traditional or heavy weight process
model like waterfall , spiral, prototype,
unified process models etc., are not
able to deliver the product to customer
with in triple constraints of software
project management and it indicates
the failure of the software project. There
could be a lot of other reasons for the
failure of software projects developed
by conventional process models
where in poor management, lack of
customer involvement, in accurate
effort estimations, fail to identify or
predict the risk are the most frequent
fit falls. To improve the success rate
of the software projects, 70% of
the companies are adopting Agile
Methodologies. Agile Methodologies
are light weight process models which
are Scrum, Kanban, XP, DSDM, etc.
Scrum and XP are very popular among
them and which are intended to develop
the software projects quicker, faster
and with high quality. The agile models
have been inculcated with iterative
development and incremental delivery

of the applications. In Agile Approaches,
planning and documentation need
not be highly constructive and at the
same time customer collaboration and
interaction is also highly improved. This
results in improvement of feedback.
Effort Estimation in Agile
Methodologies:

Project planning is very essential
in software project management to
make successful projects. Project
planning is the process or the series of
steps to establish the scope, define the
objectives and develop the action steps
to obtain them. Project Management
Plan includes Scope, Effort, Cost,
Time, Quality, Communication,
Human Resources, Procurement,
Risk, Stakeholder planning etc. One
of the prominent activities in software
project management is to estimate the
effort accurately. In Software Project
Management, Effort is measured in
Person-Months, Man-Months, Man-
Hours, Man-Years, etc. Based on
the effort we can calculate the total
development time and required cost
for the completion of the project. KLOC,
FPA, UCP, Object Points, Class points,
etc are used for effort estimations in the
traditional software development. But
none of them have given the accurate

effort estimations in software project
management when compared to Story
Points in Agile Methods. The Standish
Group reported in 2015 where 39% of
software projects developed by Agile
Methods are Successful and only 11%
of the Software Projects developed by
Waterfall model are Successful. Even
though Agile methods performs better
than traditional models, there is an
evidence of certain risk factors that can
impact the accuracy of effort estimation.
Risk Management:

Whether it is traditional process or
the modern process, Risk management
will be playing a prominent role
in software project and process
management. Risk management
constitutes risk planning, identifying,
analyzing, prioritization, monitoring
and controlling. The objectives of
Risk Management are to reduce the
expensive of rework, minimize the
probability or likelihood of impact of
negative risks . Risk is an uncertain
future event or condition that can
influence the success of software
operation. If the risk occurs, it could be
a negative impact (lost) or the positive
impact (opportunity). Risk can influence
any of the software development
activity like project planning, customer

A R T I C L E

www.csi-india.org
 30

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

relations, environment establishment,
etc,. Risk management is an ongoing
activity from the inception of the project
to deployment and retirement of the
software project. Risk Management
team should always be a proactive
rather than reactive. Proactive teams
start of thinking the potential future
harms and also try to fix it . The Standish
Group 2015 chaos reported that only
29% projects are successful, 52% are
challenged and 19% are failed. One of
the reasons to get fail is non-identifying
high risk factors while estimating the
effort in the software development.
The main objective of this article is to
address the categories of risk factors
that influence the effort estimation
in Software Agile Development. The
estimations are always go hand in hand
with risks.

Risk Identification &
Planning

Risk Avoidance &
Risk Mitigation

Fig. 1 : Risk Management

Risk Management for effort
estimation in Agile Approaches:

The objective of the Risk
Management in effort estimation is to
identify the probable risk factors and
take necessary action plans to reduce
the impact of effort related risk in the
projects. If the risk occurs there is a
probability of over budget, over runs,
low quality and increase in rework which
leads to failure of the software projects.
Common risk categories in the software
project management are Software

Development Life Cycle (SDLC), Project
Management, Group Awareness,
External Stakeholder Collaboration,
and Technology Setup. Each category of
risks is described by risk areas wherein
each risk area constitutes risk factors.
In the literature, different Effort Factors
and Risk Factors are identified. Key
Team Capability, Domain Experience,
Platform Experience, Communication
Capabilities, Requirement Volatile,
Customer Involvement….are the
relevant effort factors.

The key responsibilities of Risk
Management are to Identify Risk Factors
and mitigate the negative impact of the
risks. Risk Avoidance and Mitigation
approaches are the similar actions
to refer the risks. Avoidance is done
before the project is initiated where
as mitigation would focus on actions
during the software development.
Mitigate the risk would require that the
manger either increases the project
budget or the project performance.
Conclusion:

Agile models are producing the
more number of successful projects
comparatively traditional process
models like waterfall model, Unified
Process Model, etc. Predicting the
effort in the software development
is very essential in either traditional
or model process models. Accurate
effort estimation leads to success
of the projects. While estimating the
effort so many risk may encounter.
This article provides risk assessment
and risk control activities associated
with effort estimation in Agile software

A R T I C L E

Calculate Size
of the Project

Off the Shelf Components

Story Points

Skill Upgradation

Risks

Resource Availability

Constraints

Unit Cost

Determine Effort

Computer
Development Cost

Cost

Fig. 2 : Effort and Cost Management

Table.1 : Risk Management in Effort Estimation of Agile Methodologies

S. No Effort Factor Risk Identification Risk Mitigation

1. Domain Experience Lagging in Domain
Experience

Provide domain training by
experts in specific domains

2 Requirement
Volatile

Unclear and Inadequate
Requirements

Obtain clear requirements by
frequent communication between
team and customer. Construct
the prototype of the project to
baseline the requirements

3 Customer
Involvement

Insufficient customer
involvement

Use of rich communication media
like video, web conferencing
when face-face interaction not
possible.

4 Platform
Experience

Lack of knowledge
about platform in which
software is developed.

Include training by experts who
are familiar to that platform.

5 Communication
Capability

Lack of Communication
between team and client

Foster team collaboration by
improving communication skills
and language skills

New Teams Scrum master would not
pressurize new teams until 2 or 3
sprints to be completed

6 Inadequate
Prioritization of
Requirements

Requirement Conflicts Regular Requirement
Prioritization. Tool to give ratings

7 Software Reliability Results in safety,
economic, security and
environmental damage

Fault tolerant design, formal
validation and testing

 31
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

development. We have noticed that
domain experience, communication
capability, customer involvement are
the most prominent effort factors while
estimating the effort. In this article,
possible risks were identified while
estimating the effort and also suggested
the mitigation approach for each risk.
References:
[1] Dr. S V Shrivastava, Dr. Urvasi Rathod,

A Risk Management Framework for

Distributed Agile methodologies.

[2] Mala.V.Patil, Software Effort Estimation
and Risk Analysis-A Case Study, ICTES
2007.

[3] Ekananta Manalif, Luiz Fernando
Capretz, Ali Bou Nassif, Danny Ho,
Fuzzy-Excom Software Project Risk
Management, ICMLA-2012.

[4] Chandan Kumar and Dilip Kumar
Yadav, A Probabilistic Software Risk
Assessment and Estimation Model for
Software Projects, ScienceDirect 2015.

[5] Cinzia Muriana, Giovanni Vizzini, Project
risk management: A deterministic
quantitative technique for assessment
and mitigation, ScienceDirect 2017.

[6] Adam Trendowicz, Software Cost
Estimation, Benchmarking, and Risk
Assessment, 2013.

[7] Adam Trendowicz, Ross Jeffery,
Software Project Effort Estimation,
2013.

n

About the Authors
Dr. S Rama Sree (CSI - F8000836) is a Professor in Department of CSE & Vice Principal at Aditya Engineering
College, Surampalem, Andhra Pradesh, India. From the last 15 years she has been involved in teaching the
under graduate and post graduate students. She held the administrative position as Head of the Department
of CSE for 12 years and currently working as Vice Principal. She published 35 papers in National/International
Journals & Conferences. She is a member of several Editorial & Review Boards of International Journals and
also member of several professional bodies. She reviewed two text books on C Programming. She received
Outstanding Faculty Award and Award for Research Excellence in 2016. Her research interests include Software
Cost Estimation, Software Reusability, Software Reliability, Software Prioritization, Software Defect Prediction,
Software Maintenance and Soft Computing. She can be reached at ramasree_p@rediffmail.com.

Ch. Prasada Rao (CSI-F8000837) is Assoc. Prof in the Department of CSE at Aditya Engineering College, Andhra
Pradesh. He is pursuing Ph.D from K L Universtiy, Vijayawada. His areas of interest are Software Engineering,
Compiler Design and Automata Theory. He can be reached at prasadarao.chatla@aec.edu.in.

A R T I C L E

Call for Paper for April Issue of the
CSI Journal of Computing

(e-ISSN: 2277-7091)

Original Research Papers are invited for the CSI Journal
of Computing, published on line quarterly (e-ISSN: 2277-
7091) by the Computer Society of India (CSI). The Journal of
Computing, offers good visibility of online research content on
computer science theory, Languages & Systems, Databases,
Internet Computing, Software Engineering and Applications.
The journal also covers all aspects of Computational
intelligence, Communications and Analytics in computer
science and engineering. Journal of Computing intended
for publication of truly original papers of interest to a wide
audience in Computer Science, Information Technology and
boundary areas between these and other fields. The articles

must be written using APA style in two columns format. The
article should be typed, double-spaced on standard-sized
(8.5” x 11”) with 1” margins on all sides using 12 pt. Times
New Roman font and 8-12 pages in length. The standard
international policy regarding similarity with existing articles
will be followed prior to publication of articles. The paper
is to be sent to Prof. (Dr.) J. K. Mandal, Editor-in-Chief, CSI
Journal of Computing (csi.journal@csi-india.org) within 20th
March 2017.

Prof. A. K. Nayak
Hon. Secretary, CSI

www.csi-india.org
 32

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

A R T I C L E

Logical Hierarchy Requirement Target
Planning (LHRTP) technique to overcome
risk on Software Projects

 R. Saranya
 Asst. Professor, Department of Computer Science, Central University of Tamilnadu

Requirements in software are defined to be demand or necessitate. Requirements elicitation for
software is able to gather predictable variations clearly over the anticipated duration of the software.
Requirement elicitation gather the requirement of system from users, consumers and other
stakeholders. The requirement elicitation comprises domain professionals, market experts, and others.
Requirements elicitation concentrates on the scope, clearly gathering the predictable difference, and
the adoption of use cases that define the variations that are expected to happen over the duration of
the software. Requirement elicitation involves identifying and prioritizing requirements as a process
is complex to balance large software projects with many stakeholders.

Keywords: Stakeholders, LHRTP, Requirement Elicitation, Mutual Filtering

I. Introduction:
Software engineering concerns

with wide use of engineering principles
to achieve cost-effective software with
potentiality to function on real machines.
Requirement engineering in software
development is more crucial. Everyone
agrees that security is difficult. The
requirements engineering principles
are framed based on an idea that would
engage the community overcoming
complex problems. Security is about
the prevention of several difficulties due
to the presence of attackers behaving
malicious activities. Software security
is incredible due to the intrinsically
complex task and the problem happens
because of three main reasons such as
networks are everywhere, systems are
easily extensible and system complexity
is rising. The principle objective of
requirement engineering research
is not just to point out the fact about
security risks keep on rising every day,
but rather to defeat attack, just as any
other system property. Security should
be tackled at the beginning of the
software lifecycle.

Requirement engineering is a
processes used to find, analyze and

validate system requirements. The
objective of requirement engineering is
to describe the principal requirements
engineering activities such as
elicitation, specification and validation.
Requirement elicitation is the process
of determining, understanding,
reporting, and realizing the user
requirements and constraints for the
system. Requirements specification is
the process of documenting the user’s
needs and constraints unmistakably
and accurately. Requirements
verification is the process of promising
the system requirements are absolute,
accurate, reliable, and understandable.
The security at the requirements
stage is most essential concept for
understanding not only level of secure
software but also a secure way to
guarantee user satisfaction with end
product. In order to facilitate better
understanding, each of elicitation
specification and validation phases
considers a significant aspect of the
requirements engineering stage.
Section1 shows the three commonly
used methods for Requirement
elicitation and their limitations, Section

2 describe the Logical Hierarchy
Requirement Target Planning (LHRTP)
technique which overcomes the exciting
method’s limitations, Section 3 gives
the experimental evaluation result of
LHRTP.
2. Existing methods for

Requirement Elicitation:
(i) Stake Rare Method

Stake Rare [1] is a method that
is able to balance the large software
projects with many stakeholders using
social networks and collaborative
filtering to identify and prioritize
requirements. Collaborative filtering is
utilized to prioritize the requirements
based on the stakeholder ratings.
Stake Rare identified stakeholders
and request identified stakeholder
to suggest other stakeholders and
stakeholder actions. Constructs a social
network with stakeholders as nodes and
their suggestions as connections, and
prioritizes stakeholders using a range
of social network calculations to decide
software project authority. Using the
information gathered from surveying
and interviewing 87 stakeholders, the

 33
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

report demonstrated that Stake Rare
forecasts stakeholder requirements
accurately.

Stake Rare provides a more
absolute and correctly prioritized list
of requirements using collaborative
filtering. But Stake Rare involves certain
challenges regarding collaborative user
requirements and Fails to improve the
objectiveness and scalability of the
larger system
(ii) Security Requirements

Engineering (SRE)
Here a process is proposed to

address the challenges of collaborative
user requirements elicitation. The
process promotes stakeholder
agreement, through exploiting team
dynamics to fetch a better understanding
of requirements. However, the process
needs a further work to evaluate the
process within a larger-scale project.
A framework for security requirements
elicitation and analysis [2] is build
based on constructing a context for the
system, denoting security requirements
as criteria, and emerging satisfaction
metrics for the security requirements.
The system context is expressed using
a problem-oriented information,
then is validated against the security
requirements during building of a
satisfaction metrics. The accuracy of
security requirement is achieved using
satisfaction metrics. Furthermore,
framework needs to solve risk
analysis and understanding of formal
arguments. Constraints satisfies the
argument for security requirements.
System context using problem oriented
notation is validated against security
requirements.

SRE Methods did not impose
structure on the requirements analysis
process and fail to adequately provide
for the description of Stake holder
activities
(iii) Model-based Oracle Software

Generation (MOG) method
A framework is presented to elicit

the software requirements and also to
prioritize the software requirements.
The proposed framework ranked
the requirements by the qualified
level of threat related with each
requirement through AHP. As a further
enhancement, AHP is only utilized to
only determine the importance weight

of the requirement and not to prioritize
requirement .Then prioritization is
performed to manage the requirements.
Prioritization through AHP results using
threat level analysis is not more suitable
for facing DOS attacks. Define an
automatically generated partial, passive
oracle from the agent design models.
Not yet develop for preventing fault at
initial stage of software requirement
specification.
3. Logical Hierarchy Requirement

Target Planning (LHRTP)
Stakeholder is an individual or

group who influence the success of
failure of a project.

This approach handle the
suggestions of the multiple
stakeholders’ and developed an
effective framework for larger system.
The problem of information overload is
overcome by prioritizing according to
the requirements of the stakeholder.

The LHRTP approach uses to
recognize and prioritize stakeholders
based on the influential factor in larger
project. Stakeholders are identified
from the list of stakeholders namely
stakeholders 1, 2, 3….n as they form the
source of requirements. Furthermore,
they are prioritized, according to their
level of influence (i.e.,) scores in the
larger projects.

Fig. 1. Shows top-down approach
which assesses the virtual importance

of assessment criteria. The assessment
criteria compare and substitute with
respect to each criterion, and resolve
the problem related to the prioritization
of larger projects for every decision
substitute to reach the effective
objective.

The first step in LHRTP approach
is to construct the chain-of-command
in such a way that the decision goal is
at the top level, assessment criterion
and sub-criterion are in the middle
levels followed by the assessment
alternatives at the bottom. Once the
chain-of-command is constructed,
LHRTP approach provides a structured
framework for setting software
requirements priorities on each level
using paired comparisons.

As shown in Fig. 2, the top-down
approach represented with top, sub-
criterion and bottom level. In order to
identify the criterion and sub-criterion
on larger projects, discussion were
conducted on separate academic,
consulting, and governmental
stakeholders. Each stakeholder from
multiple groups has experts who were
asked for their input requirements
regarding the criterion and sub-
criterion levels for removing the risk
factor. After thorough and intensive
planning with the experts, a refined list
of software criterion and sub-criterion
were obtained.

A R T I C L E

Large Project

List of requirements

Stakeholder1 Stakeholder2

Recognize and prioritize stakeholder

Predict Requirements

Prioritize Requirements

Stakeholder3 Stakeholder n

Fig. 1 : Flow Diagram of LHRTP approach

www.csi-india.org
 34

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

A R T I C L E

Mutual Filtering in LHRTP Technique
Mutual filtering performs the

software prediction in addition to
their scores in order to forecast each
user’s preference for un-scored items.
Mutual filtering recommender software
systems produce recommendations
for a given user on one or more items.
In mutual filtering, users are the
individuals who provide scores to a
system and receive recommendations
from the system. A scoring is a
statistical demonstration of a user’s
preference for an item. Filtering using
Top down approach is the set of score
that a particular user has provided to
the system.

The requirements that are highly
significant are recommended to
stakeholders in order to keep away
from information overload. Mutual
filtering filter large sets of data projects
for removing the inconvenience for
end users. By collecting information
from many users, prediction of user
interest is made very easily. The
scoring from the stakeholders’ and the
priority of the stakeholders are used to
prioritize the requirements in LHRTP
approach. To compute the importance
of a requirement in a large project, the
influence of the stakeholder’s role in
the project is identified, and then the
control of the stakeholders in their roles
is determined.

The algorithm for LHRTP approach is:
Begin
Step 1: Identify criterion, sub-criterion

from the list of requirements of
multiple stakeholders

Step 2: Stakeholders of count ‘N’ is
used to identify the substitute

Step 3: Build the top-down approach for
each stakeholder

Step 4: Top-Down approach follows with
global load to recognize and
prioritize the stakeholders

Step 5: Mutual Filtering in TD-
REP approach predict the
requirements

Step 6: Analyze the global load for sub-
criterion and performance of
the substitute with respect to
the sub- criterion

Step 7: Obtain the global weights of
sub-criterion using the top-
down approach with objective
function. End

4. Experimental Evaluation of
Requirements Elicitation Using
LHRTP
Performance experiments are

conducted with various conditions using

Assessment
Goal

Assessment Criteria 1

Criteria 1:1 Criteria 1:2 Criteria 2:1 Criteria 2:2

Assessment Criteria 2

Assessment alternative Bottom level

Top level

Sub criteria
level

Fig. 2 : Hierarchy Process Representation

Tabulation of System Success Rate

Software
Requirement

Identifier

System Success Rate (success %)

StakeRare method SRE Framework LHRTP technique

1 78 82 86
2 79 84 87
3 82 87 92
4 84 88 93
5 84 89 92
6 86 92 95
7 87 93 97

120

100

80

60

40

20

0

Sy
st

em
 S

uc
ce

ss
 R

at
e

(%
)

1 2 3 4 5 6 7
Software Requirement Identifier

StakeRare method

SRE Framework

LHRTP technique

Fig. 3 : Measure of System Success Rate

 35
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

JAVA platform for software requirements
elicitation. RALIC Dataset is used for
performing the experiment on TD-REP
which contains the various datasets of
stakeholders and their requirements
on a real software project. The RALIC
datasets consist of 61 stakeholders
from OpenR, 50 stakeholders from
ClosedR, 76 stakeholders on 10
RateP-Obj objectives, 76 stakeholders
on 48 requirements (RateP-Req) 76
stakeholders on 104 precise necessities
(RateP-SReq), 79 stakeholders on 10
project objectives (RankP-Obj), and
79 stakeholders on 51 requirements
(RankP-Req).

The Top-Down approach based
on Requirements Elicitation target
Planning (TD-REP) approach is
compared against the StakeRare
method and Security Requirements
Engineering (SRE) framework.

Fig. 3 illustrates the system
success rate based on the software
requirement identifier. The software
identifier starts with ‘1’ in LHRTP
and success rate improved by 9-12%
when compared with the StakeRare
method [1] and 3-5% success rate
improved when compared with the SRE
Framework [2]. The topdown approach
engages the multiple stakeholders in
the process of assessing the software

requirements in a chain of-command
form. The chain-of-command form of
structure improves the success rate in
TD-REP approach.
Conclusion:

The software requirements
elicitation overcomes the problems
such as the information overload and
prioritization of requirements using
a LHRTP based on Requirements
Elicitation target Planning. This
approach initially performed the
identification of larger project, analysis
of requirements, recognize and prioritize
stakeholders, followed by prediction
and prioritization. The LHRTP approach
for software requirements elicitation
process based on the suggestion of
multiple stakeholders and mutual
filtering overcomes the inconvenience
during the interaction of end-users on
larger projects. The LHRTP approach
balance among the possibly different
inputs obtained from individual
stakeholders in order to reach optimum
result by overcoming the risk. The
experiments of LHRTP approach are
conducted for different conditions using
JAVA platform to attain the maximum
objective function value, scalability ratio,
maximal success rate, 7.405% improved
confidentiality rate with minimal

computational cost, and masquerading
rate. The LHRTP approach is capable
of resolving conflict, fulfillment of both
tangible and intangible criteria from
different stakeholders’ view points, to
achieve different goals.
References
[1] Soo Ling Lim., and Anthony Finkelstein.,

“StakeRare: Using Social Networks
and Collaborative Filtering for Large-
Scale Requirements Elicitation,” IEEE
Transactions on Software Engineering,
2012

[2] Haley., Charles B.; Laney., Robin;
Moffett., Jonathan D. and Nuseibeh,
Bashar., “Security Requirements
Engineering: A Framework for
Representation and Analysis,”
IEEE Transactions on Software
Engineering,2008

[3] Silvia T. Acuña., John W. Castro., Natalia
Juristo., “A HCI technique for improving
requirements elicitation,” Information
and Software Technology., Elsevier
journal, 2012

[4] Qasem Nijem., “Software Requirements
Elicitation Tools for Service Oriented
Architecture: Comparative Analysis,”
International Journal of Computing
Academic Research (IJCAR) ISSN 2305-
9184 Volume 2, Number 3 (June 2015),
pp. 109-122

n

A R T I C L E

About the Author
Dr. R Saranya [CSI-I1503352] is working as Assistant Professor, Department of Computer Science, School of
Mathematics and Computer Sciences, Central University of Tamilnadu, Thiruvarur. Her Areas of specialization
are Cyber Security, Big Data Analytics, IoT. She has been awarded Mother Teresa Sadbhawana Award in
recognition of Sterling Merit Excellent Performance and outstanding contribution. E-mail: saranya@cutn.ac.in

Memorandum of Understanding
between Computer Society of India and Springer Nature valid upto 31st December 2020

Requirements :
 � Formulate strong Technical and Advisory Committees comprising of national and international experts (from renowned

Universities/corporates of repute) in the focus area of proposed conferences
 � Build communities around conferences
 � Define steps to check plagiarism
 � Focus on stringent peer-review process involving all the members mentioned in the Committees and by allowing

sufficient time for review
Interested Conference organizers can contact:

Ms. Suvira Srivastav, Associate Editorial Director, Computer Science & Publishing Development
Springer India, 7th Floor, Vijaya Buiding, Barakhamba Road, New Delhi, India.

Ph: +91-11-45755884, Email: Suvira.Srivastav@springer.com.

www.csi-india.org
 36

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

A R T I C L E

Technological advances in Software
Engineering

 V Vetriselvi
 .Sc.,M.Phil.,SET, Asst. Professor ,Department of MCA, Shrimati Indira Gandhi College, Trichy-2. Email id: vetriselviramesh@gmail.com

A major challenge for software engineering today is to improve the software production process.
Nowadays, most software systems handcrafted, wade software project management is primarily based
on tenuous conventions. Software engineering faces the challenge of replacing the conventional mode
of operation by computer-based technology. This theme underlies the Software Engineering Institute
that the DoD has established at Carnegie, Mellon University. Among the contributors to software
development technology are ideas, such as object-oriented programming, hardware improvements
related to personal workstations, and programming environments that provide integrated sets of
tools for software development and project management. Facilities and tools are by themselves not
sufficient tc achieve an order of magnitude improvement in the software production process. Future
directions in software engineering must emphasize a constructive approach to the design of reusable
software and to automatic generation of programs. We will briefly explore the promising technology
that can be used to implement these ideas.

Introduction:
A major for the software

engineering field is to bring about a
radical improvement in the software
production process which is plagued
toy low quality and inflexibility of its
products and serious overruns in
terms of both cost and time. A decade
ago, when software engineering first
emerged as a separate sub discipline,
the initial focus mere on controlling
the production process than achieving
a radical improvement by changing
the process. The result of this control
view has been a number of substantial
activities in areas such as measuring
system performance and programmer
productivity and developing techniques
for program testing and symbolic
debugging. Today’s practice is still largely
dominated by this control view and its
ensuing analytic approach to improving
software production. although useful
for better understanding of the software
production process and suitable for
finding gradual improvements, analytic
tools of the kind mentioned above are
generally not adequate to achieve an
order of magnitude improvement in
the Permission to copy without fee

all or part of this material is granted
provided that the copies are not made
or distributed for direct commercial
advantage, the ACM copyright notice and
the title of the publication and its date
appear, and notice is given that copying
is by permission of the Association
for Computing Machinery. To copy
otherwise, or to republish, requires
a fee and/or specific permission. A
radical improvement requires a
constructive approach that changes the
process itself instead of improving on
existing practices. The purpose of this
paper is to review the current events in
software engineering that support this
constructive approach and to explore
future developments that may lead
to a substantial improvement of the
software production process. Current
events that relate to software production
are rooted in the short but dynamic
history of software engineering. A brief
analysis of the history is followed by a
discussion of one of the major events
in the area at the present time, which
is the mechanization of the discipline
into support systems arid tools that
assist programmers in the application

of software engineering techniques.
The observation that tools and support
systems are by themselves not sufficient
to bring about a radical improvement
in the software production process
leads to an outlook on the future. The
major ideas and concepts for achieving
the desired radical improvement in
software production are reusability and
automation. The last part of tiffs paper
is dedicated to a discussion of these
subjects and shows how they can be
applied in practice. It is the author’s
belief that the software production
process can be improved substantially
if we can steer the development of
software engineering in the direction of
reusability and automation.
The nature of Software Engineering

Engineering is the creation of
mechanisms or objects that facilitate the
achievement of a goal. Civil engineers
build bridges for people to get to the
other sides electrical engineers build
radios for the purpose of broadcasting
news and musical entertainment,
programmers write database systems
for people to store and retrieve
information. The .Oxford dictionary of

 37
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

the American Language stresses the
fact that engineering is the application
of scientific knowledge and the control
of power to achieve the intended
goal. The adjective “scientific” seems
unnecessarily restrictive because
experience and transfer of know how
are substantial factors in engineering
without necessarily being scientific. An
interesting aspect of engineering is that
the goal of an engineering endeavor
may be to facilitate achieving some
other goal. This is the idea of a tool. The
mechanical engineer, for instance, may
design a floating crane that is used by
the civil engineer to build his bridge. The
goal of tile mechanical engineer is not
a particular bridge, but the process Of
building bridges. The object he creates
is not the beam that spans the river, but
the tool that enables the civil engineer
to put that beam in place.

Software engineering is particularly
concerned with the general criteria that
determine the quality of a design and of
the resulting software product. Criteria
frequently discussed in the literature
are Correctness the correspondence
of specification, design and
implementation Reliability the ability
to reproduce a result Performance the
ability to respond within tolerable time
limits without excessive demands on
storage capacity Adaptability the ability
to modify software to take advantage of
hardware improvements or to respond
to changing application requirements
Extensibility the ability to extend the
functionality of a system Friendliness
the ability to interact with the user in
terms of understandable messages
while not requiring irrelevant precision
of user input Reusability the use of
parts of a system in the design and
implementation of another system
Fault. Tolerance the protection of
information integrity against hardware
or power failure Robustness the
protection of information integrity
against unintentional user mistakes and
malicious user acts Privacy/Security
the protection of information against
unauthorized access and against the
effects of modification in someone
else’s data
The Evolution of Software
Engineering

The foundation for software

engineering was laid in the sixties with
the invention and formulation of basic
concepts in programming languages
and operating systems. The design of
FORTRAN which introduced the concept
of procedural abstraction was soon
followed by the design of Algol60 which
introduced a wealth of new concepts
including data types, parameter
evaluation 30 modes, recursive
procedures, static and dynamic scopes,
dynamic data objects and a formal
description of language syntax. Later
in the decade, SIMULA67 introduced
the concept of object-oriented
programming through classes and
subclasses, while Algol68 and Pascal
introduced user defined data types,
reference variables and disjunctive type
structures. Much of the engineering
during this period was concerned with
the optimization of parsing and code
generation and with the efficient use
of hardware resources in timesharing
operating systems. Around 1970, the
focus of attention shifted from basic
concepts in languages and systems and
their implementation to the construction
of systems out of program modules.
Programmers became more ambitious
and wanted to construct systems that
were hard to express in a single program.
At this point in time, the need arose
for programming-in-the-large which
concerns itself with program interface
specifications, the modification process
of program modules in the context of
an evolving system, and the interaction
between programmers in the context
of a software production project. This
development had the effect that software
engineering shifted its focus from the
construction of individual programs to
the process that controls the creation of
software systems. The transition from
pure programming-in-the-small to the
more ambitious programming in the
large is viewed by many as the actual
birth of software engineering. The
distinction between these two forms
of programming was clearly stated
for the first time in a seminal paper
by DeRemer and Kron [DK76]. Some
of the most important initial results
of software engineering were the
modularity concept and Parnas’ hiding
principle. Other constructive work in
software engineering of that period

included the design of system version
control and configuration management
mechanisms. In addition, a substantial
effort was put into measurements
of performance and productivity as
well as into models for controlling the
software life cycle which includes the
production process from inception
and specification to implementation
and successive releases. The waterfall
model is the best known among the
various models proposed for life cycle
management [Le80]. An alternative
approach to controlling the complexity
of large software systems is taken
by the founders of a programming
methodology. Their activities give rise to
the concept of structured programming
and to various approaches to program
verification. Structured programming
is in fact a philosophy based on the
limitations of human beings in dealing
with the substance of programs. It
builds on our strengths (rather than
our weaknesses) by promoting the
utilization of three of our abilities in
dealing with algorithms, enumeration,
induction and abstraction. Enumeration
allows us to distinguish between
an oversee able number of cases,
Induction allows us to make use of
iteration and recursion, Abstraction
allows us to ignore details at proper
moments and to reduce complexity
by viewing collections of objects as
atomic units. Program verification
has been put on a solid basis in the
last decade. The axiomatic approach
is particularly suitable for proving
the correctness of programs based
on their control structure. Algebraic
verification is particularly well suited
for demonstrating the completeness
and consistency of a collection of
operations defined for an encapsulated
data structure. The method of a
denotation description of the semantics
is particularly suitable for showing
the consistency of a language design
and for expressing the meaning and
interpretation of language constructs.
Although program verification is well
understood, a major drawback of the
state of the art is our inability to apply
the various methods to large systems.
The attempts in that direction have
resulted in some interesting interactive
verification systems that can handle

A R T I C L E

www.csi-india.org
 38

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

small to medium size programs but
not large systems consisting of many
components that are not always
collectively available. The state of
the art in program verification at
the end of the last decade was one
of the causes for another change in
the direction of software engineering
leading to the exploration of software
development tools and environments.
Two other causes were the analytic
approach to improving the software
production process and the labor-
intensive implementation of life
cycle support. The analytic approach
blocked further progress because of
the tacit assumption that the software
production process was basically well
organized and needed only further local
optimization. The approach to life cycle
support puts system development and
project management entirely in the
hands of people with little or no support
from software technology. In the next
section, we discuss the resulting events
of the present that are characterized by
a mechanization of life cycle support into
integrated programming environments.
Programming Environments

A programming environment
is a software system that supports
the development and maintenance
of software products. The term
“programming environment” does not
refer so much to the activity of writing
programs, but more to the manipulation
of programs for the purpose of system
generation, configuration and version
control, project management and
documentation. Althoughthe term
“system development environment”
is actually more appropriate in this
context, we will stay with tradition
and stick to the widely used term
“programming environment” to denote
systems that support the entire
spectrum of activities involving software
production. The goal is for programming
environments to support the entire life
cycle and not just the programming
fraction of life cycle. Traditional
programming environments lack some
properties that seem very desirable in
modern programming environments.
These properties are tool integration
and uniformity of the user interface.
Tools are integrated when they possess
common knowledge that can be applied

in each tool. This common knowledge
often takes the form of shared data
formats or of information stored in
a common database. An example of
tool integration is the combination of
editor, compiler and debugger that all
operate on a common syntax tree. The
editor shares syntactic knowledge with
the compiler and is able to enforce the
syntax rules while a program is being
written. The debugger shares program
structure knowledge with the compiler
and is able to translate problems back
into source representation through the
common database. Tool integration is
of great help to create environments
that are more specifically task. Oriented
than the traditional general-purpose
environments which are still most
common today. Tool integration is
almost totally lacking in the traditional
programming environment. Tools
such as the text editor, the compiler,
the linking. Loader ned the debugger
share at best some knowledge of the
underlying file system. No information
is shared, however, about data formats
or data values and no information is
exchanged through a common database.
A text file is a Pascal program, for
instance, because the author believes
it is one, not because the text editor
checked that it really is.
Reusability and Automation:

Programming environments,
software metrics and software
engineering methodologies are helpful,
but not enough to bring about an order
of magnitude improvement in the
quality of our software products and in
the predictability of the production cost
and effort. Constructive and analytic
techniques are both valuable and
should be further pursued to facilitate
the software production process.
However, one must expect no more than
a gradual improvement from applying
these techniques, because none of
them necessarily changes the software
production process itself. It seems that
a major problem in software production
is the fact that most software is written
from scratch. The reasons why this is
common practice are threefold.
 � Programs are hard to read

 � Programs are strongly tied to their
context

 � Information on existence of
programs is often hard to get.
The fact that the meaning of a

program is hard to derive from the
source code gives programmers the
feeling that one might as well write the
program from scratch instead of trying
to understand the designer’s reasoning
behind an existing program text.
Although documentation is of some
help, its two major drawbacks are its
separation hem the source text and its
lack of rules that guarantee uniformly
and completeness. Formal
specifications are in fact far more
hopeful for an accurate description of
what a program does, but 3re generally
even harder to understand than the
source text. A possible solution to this
problem is to agree on a functional
description of programs that does not
describe in detail what a program does,
but describes the data structures it
uses, the input values it accepts and the
output values it produces. After going
through the effort of understanding
someone else’s program, good
intentions are often rewarded with
disappointment because of the
program’s dependency on the runtime
environment. Even if a program is
designed to run on a popular operating
system such as UNIX rM2, the
programmer who wants to make use of
it in his environment will discover that
the Program does not run because of
incompatible peripheral equipment or
local operating system extensions.
Context dependencies are often hard to
detect because documentation on these
matters is rarely provided. A
programming language such as Ada
may alleviate this problem because of
its precise description of package
dependencies. Explicit description of a
program’s dependency on other
programs is strongly recommended
over implicit dependencies that are
generated by deep nesting of scopes
and by an excessive use of global
objects. It is often very hard to find out
which programs written by other people
can be used again. Many programs are
designed as system modules and are
burried deep down in a system
description. Names of program
modules often make little sense outside
of the system context, while the purpose

A R T I C L E

 39
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

of a program usually is described in
relation to the modules it interacts with
instead of in terms of its own
independent functionality. The result is
that a design always seems
unnecessarily complicated to an
outsider. This phenomenon causes the
outsider to think that he could have
done a better job than the designer of
the existing program. This lack of
confidence in your fellow programmer
is a major cause of unnecessary
duplication of effort. The problem of
acquiring information about the
existence of programs is solved in part
by encouraging the potential user to try
harder to find out what is available and
how it is used. However, this is not a
reasonable proposition without counting
on substantial help from the original
designer. The only way that one can
realistically hope that people will try to
reuse software is to demand that
designers of original programs take
reusability into account from the start. If
reusability is adopted as an original
design objective, one may expect a
program documentation style to emerge
that clearly explains a program’s
independent functionality, its intended
use and its dependency on its context. A
programming environment can play an
important role in making software
reusable. It can provide facilities that
allow users to browse through libraries
that describe existing programs and
their usage. The better programming
environment will provide, in addition, an
engineering environment that is used
for transforming an existing program
into one needed for a specific
application, or for deriving a specific
program from a general description.
Reuse of software is at this point in time
our best hope for improving the software
production process and its resulting
product. It has the potential of reducing
the cost and effort of the process and it
has a good chance of increasing
reliability through incremental
modifications of programs of proven
quality. However, the preceding
discussion shows that the term
reusability must not be given the narrow
interpretation of reusing existing
programs without change, In fact,
reusability spans a spectrum of
applications that each makes sense in a

particular context. Two direct
applications of reusability are the use of
program libraries and of shared code.
The best example of reused program
libraries is that of mathematical
subroutines. The IEEE Society has done
us a good service by standardizing a set
of mathematical routines, including
specifications of input/output precision.
It would be extremely helpful if similar
standard packages were designed and
maintained for string processing,
window management and namespace
management. The Ada language made
a useful contribution by including in the
language a standard package for file
handling and for text I/O. Users of
timesharing operating systems are very
familiar with the idea of sharing code.
Their programs routinely use common
operating system facilities for file
handling, input/output and memory
management. It is in this context
immaterial whether or not executable
versions of code are shared. Even if
programs each use their own copy of a
common program, the fact that counts
is that the utility program was not
written by the user, but taken, as is,
from an available pool. Practice has
shown that reusability through code
sharing is greatly facilitated by
eliminating the context dependency
factor. This can be done in one of two
ways: either by writing a program that is
independent of its context (this is
basically the Ada Language approach),
or by having the various users work in
the same context so that context
dependencies are irrelevant. Although
the latter seems to be a cop out, its
usefulness has been firmly established
by the success of the UNIX operating
system, The reason why many
companies are interested in
standardizing on UNIX, as universities
basically have done over the last decade,
is to capitalize on the available software
that runs on UNIX while avoiding the
problems o| having to translate and
rewrite existing programs to run on
different operating systems. The Aria
language provides another form of
reusability through type abstraction
[Ad83]. Generic packages can be written
in Ada that specify the traversal and
updating operations on data structures
while leaving the element type

unspecified. This facility supports the
concept of reusability by allowing a
programmer to define the details of a
data structure once and for all,
independent of what type of objects will
be stored in that structure. A generic
package for queues, for instance, can
be instantiated for messages, for jobs,
for arrival and departure schedules, etc.
Other practical forms of reusability are
through specification and through
common design. Memory management
and parsing techniques are the typical
examples of common design that is
applied in many operating systems and
compilers. Although this form of
reusability has the drawback of
requiring implementation, it has the
great 2UNIX is a trademark of Bell
Laboratories. Advantage of building on
a conceptual basis that can be taught in
the classroom. Reusability can be
greatly enhanced by automation of the
program generation process.
Automation in this context means using
tools that translate a precise program
specification into a program form for
which a compiler or interpreter exists.
The automation tools are commonly
known as generator programs, or
generators for short. The input of a
generator is a program description and
its output is a program in a programming
language or in some other form that
can be translated into machine code.
The target of a generator might for
example be intermediate code as
generated by the front-end of a compiler.
This intermediate code is then
translated into machine code by the
code generator part of a compiler [. The
idea of a generator was first proposed
for compilers in the form of a compiler-
compiler. Reusability and automation
can be very effective when applied to the
design of a family of systems that have a
large part in common. Examples of
such families are database management
systems, compilers and programming
environments. The kind of facilities
which members of a system family
typically have in common are the
facilities for database or file
management, for input/output and for
maintaining the user interface.
Conclusion:

 The main objective of software
engineering is to help produce high

A R T I C L E

www.csi-india.org
 40

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

quality software systems within
reasonable bounds of time and cost.
The major factors that determine
the quality of a software product in
addition to its desired functionality
are reliability, performance, flexibility
and friendliness of the user interface.
Software engineering is right now
facing the challenge of solving the
serious problems encountered in the
software production process which lead
to cost and time overruns and products
that are lacking in many of the quality
factors. Tools most frequently used
for improving the software production
process are program measurement and
software development support tools.
Measurement tools are helpful in finding
the bottlenecks in the existing software
production methodology. Support tools
are helpful in alleviating the task of the
people involved the production process.
Both kinds of tools help to make the
production process more effective and
more reliable. The original design of
isolated support tools is gradually being
replaced by integrated programming
environments that behave more as
intelligent assistants than as toolboxes.

Measurements and support tools are
designed to correct flaws in an existing
methodology, but do not address
the more fundamental question of
methodology itself, There is a general
feeling that current practices are
inadequate (and will become more so in
the near future) to satisfy the growing
demand for reliable software that is
produced on time and within budget. The
basic flaw.,~ of the current process are
its labor intensive approach to project.
It seems that a significant improvement
can be achieved if we can produce
reusable software and automate the
generation of new software. Success in
the area of reusability may reduce the
production of new software to a fraction
of what is commonly written today,
while automation has the potential
of simplifying the production process
with an additional gain in reliability.
Reusability has no chance of being
successful unless taken into account as
a major design objective from the start.
A major obstacle to overcome is the
problem of information dissemination.
With current software production
practices, it is extremely difficult to find

out what is available and how things
work. Time is ripe for a major effort to
define the concept of reusable software
precisely and to develop techniques for
creating reusable software.
References :
 � Reference Manual for the Ada

Programming Language. United
States Department of Defense,
January 1983. [Ah77] Aho, A. V. and
J. UIIman. Principles of Compiler
Design. Addison Wesley, 1977.

 � Barbacci, M. R.; A. N. Habermann;
M. Shaw. The Software Engineering
Institute: Bridging Practice and
Potential. IEEE Software [2], 6.
November 1975.

 � Brooker, R. A. and D. Morris, A
General Translation Program for
Phrase Structure Languages.
Journal of the ACM 9, pp. 1-10,
1962.

 � Buxton, J. N. Requirements
for Ada Programming Support
Environments (Stoneman). US
Government, Department of
Defense, February 1980.

n

A R T I C L E

About the Author

Ms. v. vetriselvi, (CSI-N1285695) Asst. Professor, Department of MCA, Shrimati Indira Gandhi College, Trichy
has completed M.Sc. in Computer Science from Bharathidasan University, Trichy; M.Phil and is SET Qualified.
She has got 26 years experience as a faculty in Arts and Science Colleges. She is a Question Paper Setter for
Periyar University, Salem and Bharthiyar University, Coimbatore. She has published a Book Titled “Visual
Basic 5.0”

 41
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Congratulations!
Brig. S v S Chowdhry (Retd) was recently conferred the prestigious Bharat Gaurav Award
by the India International Friendship Society. The Award was presented to him at an Awards
Ceremony at New Delhi on 21st December 2016 by Dr Bhisham Narain Singh, former
Governor of Tamil Nadu and Assam.
Brig Chowdhry was President of the CSI during 1992-94. He was also President of the IETE
during 1994-96. He has been honoured with the Lifetime Achievement Awards by the CSI and
the IETE.
CSI express hearty congratulation for the same

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

A R E P O R T

CSI Regional Student Convention
 Chittaranjan Pradhan

 Assistant Professor, School of Computer Engineering, KIIT University, Bhubaneswar

KIIT CSI Student Branch, KIIT University,
Bhubaneswar, Odisha organized one
Regional Student Convention under
CSI banner in region IV during 18-
19 February 2017. The theme of the
convention was on IoT and Information
Security. Mr. Sanjay Mohapatra, Vice
President, CSI, Prof. Brojo Kishore
Mishra, Regional Student Coordinator,
CSI Region-IV, Prof. Samaresh Mishra,
Program Chair, Prof. Bhabani Shankar
Prasad Mishra, Organizing Chair and Mr.
Amit Keshri, Senior Architect, Infosys
share the dais during the inauguration
ceremony of this convention.

During these two days of the convention,
around 200 participants & volunteers
were assembled. The following events
were organized:

Event 1: Panel Discussion
All the guests were discussing regarding
the success of CSI Bhubaneswar
chapter and the events to be organized
under this chapter in the coming days.

Event 2: Keynote Address
Mr. Amit Keshri, Senior Architect,
Infosys, Bhubaneswar has delivered
his talk titled, “IOT – Internet of Things:
Smart Connected Products”. He has
discussed the current issues of IoT
and discussed the solution approach
by Infosys Ltd. Prof. Bhabani Shankar
Prasad Mishra managed this event.

Event 3: Keynote Address
Prof. Sudhakar Sahu, Asst. Professor,
IMA Bhubaneswar has delivered his talk
titled, “Application of Crypto System”.
He has discussed the security issues
in the current era and some solutions
they are working at IMA, Bhubaneswar.
Prof. Bhabani Shankar Prasad Mishra
managed this event.

1st

2nd

3rd

Event 5: ICT Quiz
Students have participated in the
Quiz competition based on ICT. Aditya
Agrawal, Manabhanjan Pradhan &
Mayank Agrawal secured 1st, 2nd & 3rd
positions respectively. Prof. Nachiketa
Tarasia has managed this event.

1st

www.csi-india.org
 42

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

A R E P O R T

2nd 3rd

Event 6: Technical Poster
Presentation
Students have participated and show
case the posters on the theme “Digital
India”. Shweta Patwari & Kumari
Vandana stood the 1st position. Aprajita
Singh and Gopal Jana secured the
joint 2nd position and shared the
prize money. Manabhanjan Pradhan
& Swapnil Singh and Rohini Seth &
Primula Mukherjee secured the joint
3rd position and shared the prize
money. Prof. Chittaranjan Pradhan has
manged this event.

1st

Joint 3rd

Joint 2nd

Joint 2nd

Joint 3rd

Joint 3rd

 43
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

•	 Cover	Story
•	 Technical	Trends
•	 Research	Front
•	 Articles
•	 Innovations	in	IT
•	 Security	Corner
•	 Practitioner	Workbench
•	 Brain	Teaser
•	 Chapter	Reports
•	 Student	branch	reports

A R E P O R T

Pre-Convention Tutorial on Data Science
 Prof. R.Nadarajan

Session 1
Introduction to Data Science
Speaker: Karthik Ramasubramanian:

Data Science – Three Pillars of Data
Science (Hacking Skills, Math &
Statistical Knowledge and Substantive
experience) – Data Structure & Machine
Learning – Big Data – Visualization –
Cloud – Internet of Things – Statistics
– Enlighten the facts and various
fields where the Data Science is
applied. Educated the problem solving
mechanism using data science and
predefined algorithms.

Case Study on BMI Calculation
Speaker: Abishek Singh
Challenges in insurance – Process of
getting life insurance – Prediction of
BMI.

Statistics
Data descriptive: Structured, Semi
Structured, Quasi structured,
Unstructured data.

Machine Learning (ML): ML is
an algorithm that can learn this
relationship without relying on any rule-
bases programming. ML will emphasis
on how the final predictions will look
like if similar data is supplied in future.

Statistical Learning: Statistical
modeling will estimate the relationship
based on formal quantification from
statistical inferences. The process
of statistical inference quantifies the
process by which data is generated.

Session 2
Speaker: Abishek Singh
Machine Learning Algorithm –
K-means, Decision Tree & Neutral
Network.

Visualization – GGPlots in R – Boxplot,
Histogram, Scatterplot, Sankey Plot,
Cohort Charts, Bubble Chart. GGviz –
Motion Charts.

Ensembles: Bias vs Variance trade off -
Bagging & Booting.

Session 3
Speaker: Karthik Ramasubramanian:
Big Data – Ecosystem –

Graph Databases - Graph databases
support a very flexible and fine-grained
data Model. RDBMS provides results,
Graph Databases provides answers.

Session 4
Speaker: Abishek Singh

BMI Calculation -

Image Processing – Face Detection –
Facial key Points detection.

Use case: Predict Emotion, Recognition
– verification.

Industry – Academia Collaboration: Fake
news detection, Persona identification,
Computer vision & Emotion Detection.

Future of Data Science: Deep Learning
– Internet of Things – Online Machine
Learning (Mobile Devices & Real –Time
Performance.

Talent Graph: Technology Stack - Neo4j,
Titan, Python, Cloud APIs & MEAN
technology stack

Machine Learning Probabilistic Graph
Models, Regression Analysis, Natural
Language Processing(NLP).

Machine Learning Types

Supervised Learning

Continuous
Target Variable

Regression

Housing Price
Prediction

Continuous
Target Variable

Classification

Medical Imaging

Target Variable not available

Clustering

Customer
Segmentation

Association

Market Basket
Analysis

Categorical Target Variable

Classification

Text
Classification

Clustering

Line-finding on
GPS data

Categorical Target
Variable

Classification

Optimize Marketing

Target Variable not
available

Control

Driverless Cars

Unsupervised Learning Semi-supervised
Learning Reinforcement Learning

Contd. on next page

www.csi-india.org
 44

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Glimpses of Pre-Convention Tutorial on Data Science

 45
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

Clues

CrossWord Durgesh Kumar Mishra
 Chairman CSI Division IV Communications
 Professor (CSE) and Director Microsoft Innovation Center, Sri Aurobindo Institute of Technology,
 Indore. Email – drdurgeshmishra@gmail.com

Test your knowledge on Software Engineering (Open Source Software)
Solution to the crossword with name of first all correct solution provider(s) will appear in the next issue. Send your answer to CSI
Communications at email address csic@csi-india.org and cc to drdurgeshmishra@gmail.com with subject: Crossword Solution –
CSIC March 2017 Issue.

ACROSS
5. A project acronym for open source software
7. A repository of thousands of open source

projects
8. A Linux-based Open source platform for

mobile
9. A virtual learning system
10. A tool for automated website hosting
12. Quality control expert of an open source

sofware community
13. An open source mail transfer agent
14. Collection of tools which allows running UNIX

Applications on Windows Operating System.

DOWN
1. An integrated development environment
2. An open source distributed database system
3. A 3 D graphics and animation package
4. To give a limited version free and charge for

premium version
6. An error or flaw in computer program
8. A Freely-available web server
11. Developing a new program from some open

source code

We are overwhelmed by the response and solutions received from our enthusiastic readers

Congratulations!
All Nearby Correct answers to February 2017 month’s crossword received from the following
reader:
• Dr. Sandhya Arora, Professor, Cummins college of Engineering for women, Pune
• N.Saiteja, B.Tech 3rd year, CSE, Gokaraju rangaraju Inst. of Engg. and Technology
• Valli Rajasekhar, Chitrada, IRS, ONGC
• Mr. Deepu Benson, Amal Jyothi College of Engineering, Kerala
• Chandra Dasaka, CSI Hyderabad Chapter
• Prof. Kirti Patil, Asst. Professor, MET’s BKC Institute Of Engineering, Adgaon, Nashik
• Vishal Sanghai, 2nd Year, The LNMIIT, Jaipur
• Shridhar B. Dandin, Professor, Department of Computer Science, B K Birla Institute of

Engineering and Technology BKBIET Campus, PILANI

1 2

3

4 5 6

7

8

9

10

11

12

13

14
Solution for February 2017 Crossword

BRAIN TEASER

PRE-CONVENTION TUTORIAL ON DATA SCIENCE

Date: 22.01.2017Venue: PSG College of Technology

PRE-CONVENTION TUTORIAL ON DATA SCIENCE

Date: 22.01.2017Venue: PSG College of Technology

PRE-CONVENTION TUTORIAL ON DATA SCIENCE

Date: 22.01.2017Venue: PSG College of Technology

PRE-CONVENTION TUTORIAL ON DATA SCIENCE

Date: 22.01.2017Venue: PSG College of Technology

1
S

2
M

3
L H

O 4 D R I V E R

T A N L

H 5
P E U L

6 P R O C E S S A M X

R C O

B 7 K E R N E L

O E

A 8
B O O T

9
H R I

10
A N D R O I D

N S

G

www.csi-india.org
 46

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

F R O M C H A P T E R S & D I v I S I O N S

AHMEDABAD CHAPTER

To address the growing cyber crimes and to tackle the
internet related frauds, the city’s cyber security experts
joined hands and organized Logout – 1st ever cyber
awareness conference of Gujarat on 22nd January, 2017
in Ahmedabad. The conference was co-organized by the
Computer Society of India, ComExpo Cyber Security Pvt Ltd
and other cyber security experts of the state where cyber
security experts educated attendees with various cyber
threats, internet issues and ways to deal with such issues.
Logout conference was attended by 650+ students, tech
professionals and netizens from around the Gujarat state.
Mr. Rakshit Tandon spoke about various cyber crimes and
modes operandies used by cyber criminals and educated
audience with online safety tips and cyber laws of India. Col
Vineet Kumar spoke about tactics used by hackers to commit
phone hacking. He also gave an interactive presentation
and explained models used by cyber criminals to commit
online banking and ATM related frauds. Jayesh Solanki –
Chairman Computer Society of India, Ahmedabad Chapter
introduced the audience with the awareness campaigns and
other work being carried by CSI. He insisted on the needs
of such more campaigns by Public-Private partnership to
raise the cyber awareness in the state and the country.
Ms. Ruzan Khambatta – A social-entrepreneur activist
working for women’s safety talked about various initiatives
that are being carried out by NGOs, Police department and
government department to tackle women’s safety issues.
She highlighted one such activity

AMRAvATI CHAPTER

Dr. Shirish S Sane, Regional Vice President, Region-VI,
visited Amravati on 13th February 2017. Dr. G R Bamnote,

Chairman CSI Amravati Chapter, Dr. V S Gulhane, Vice
Chairman CSI Amravati Chapter, Dr. M A Pund, Hon
Secretary CSI Amravati Chapter welcomed him. A meeting
was conducted to discuss the issues related with CSI. Dr.
Sane guided the Chapter on the issues related with the
conduction of various programme and other issues in the
betterment of the society and student members. He also
appealed the members to update their profile on CSI
website and also to increase the number of life members.

BHOPAL CHAPTER

A one week faculty development program on Big Data&
Hadoop was organized by Department of IT and School of
Information Technology of University Institute of Technology,
Bhopal from 31st January 2017 to 4th February 2017 in
association with CSI Bhopal Chapter. The expert talks
were delivered by eminent speakers like Dr. Vijay Kumar
(JNU New Delhi), Dr. Bhaskar Biswas (IIT BHU), Dr. Aruna
Tiwari (IIT Indore), Dr. Parag Kulkarni, Pune, Dr. P K Chande
(Former Professor, IIM Indore), Dr. Ruchir Gupta (IIITDM
Jabalpur), Dr. Syan Ranu (IIT Delhi). Different topics related
to Big Data such as machine learning, social networking,
trajectories, big data analysis, etc were covered by speakers
during the program. The lab sessions were conducted by
Mr. Abhishak Gaur in which he demonstrated the twitter
analysis, map reduce program etc. The program was Co-
ordinated by Dr. Roopam Gupta, Dr. Anjana Pandey and Dr.
Mahesh Pawar. More than 70 faculty and Research scholars
from affiliated colleges of RGPV, Bhopal have participated
in the program and the program was very well appreciated
by the participants. The program ended with a valedictory
function and Certificate Distribution by the Director of UIT,
RGPV Bhopal.

NOIDA CHAPTER
Noida Chapter has organized a one day National Workshop
on the topic Information Security, Cyber Forensic & Big
Data in the campus of Monad University, Ghaziabad, UP on
26th November 2016. Prof. Ram Chandra, Hon VC, Monad
University has given the welcome address and elaborated
the aims & objectives. Prof. Manohar Lal has deeply
explained the use of computer education in India & its use
for protecting the cyber crime in the country. Inaugural
session was addressed by the following eminent speakers.
Chief Guest Prof. K K Aggarwal in his inaugural address
has said that UID is the biggest data base in the world and

 47
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

F R O M C H A P T E R S & D I v I S I O N S

it has reversed the old statement. Invention is the mother
of necessity in the present internet age. He has also said
that we should protect our debit card, credit card & bank
credentials by using strong password in the present age
of cashless economy. Mr. V K Shukla Add. Advocate UP
Government has said that the use of internet has become
very important for communication in offices & courts. Cyber
crime has also increased in the recent times. Internet has
encouraged the field of education, business and knowledge,
but at the same time it has also taught new techniques to
cyber criminals to hack the sensitive data. Mr. Anuj Agrawal
has given hands on training on memory forensic & data
forensic. He has also given tips to secure the login id &
password from cyber criminals. He has also given various
tips to protect from cyber criminals in case of theft of crime.
The workshop was coordinated by Dr. Payal Bhardwaj, & vote
of thanks was given by Dr. R C Tripathi, Organizing Secretary
& Chairman CSI Noida Chapter

TIRUCHIRAPALLI CHAPTER

Tiruchirappalli Chapter conducted the guest lectures on
Security in Cloud on 10th January 2017. Speaker for this
program was Er. K Vignesh, Assistant Professor, MAM
College of Engineering, Tiruchirappalli.

Tiruchirappalli Chapter conducted the guest lectures on
Information System and the Entropy on 14th February 2017.
Er Parlgyan Singh, Systems Engineer, ICT, BHEL, Trichy was

the speaker for the event.

vADODARA CHAPTER

Chapter celebrates The Computer Day on 22nd January 2017.
The event was organized in collaboration with Department of
Computer Science and Engineering, The M S University of
Baroda. Technical Fiesta comprised of total 16 competitions,
giving opportunity to students of every age i.e. from class 1st
in schools to final year of the University. The highest number
of participation was in Programming in C competition, with
45 participants from colleges, and from schools it was 51
teams. The topics for various competitions were IT and
socio-IT related theme. The topic of some of the School
competitions are pre-announced i.e. “Digital India” for
Web Designing, “Internet of Things” for PPT Presentations
“Demonitization / Cashless Transactions” for Collage
Making, “Clean India, Green India” for Poster Making. Three
Prizes for each competition were awarded. Total of 63 prizes
were distributed for all the competitions, amounting to
` 38,000/- which were covered from Participation Fees and
Sponsorship. Several Senior CSI Committee Members and
CSI Professionals graced the occasion

vELLORE CHAPTER

Chapter in association with ACM Student Chapter organized
a one day Guest Lecturer on Marching Towards Web Wisdom
on 28th January 2017 at VIT University. Mr. Sabapathy,
Vice President, Technical Operations, Nine Stars Info
Technologies Pvt Ltd, Bangalore explained about web data,
characteristics of web data and different issues of web data.
Discussion about how machine learning techniques can
be applied to web data context. He explained the research
directions in web data. 80 members participated in the guest
lecture. Organized by Prof. H R Viswakarma, Prof. K Govinda,
RVP VII.

Chapter in association SITE, VIT University organized one day
Guest Lecturer on Software Analytics on 15th February 2017
at VIT University. Dr. Anjaneyulu Pasala, Senior Research
Scientist, Infosys, Bangalore explained introduction to
analytical software tools and how these tolls can be used in
academia for research, how machine learning techniques
can be applied to web data, around 80 members participated
in the guest lecture. Organized by Prof. G Jagadeesh &
Prof. K Govinda, RVP VII.

F R O M C H A P T E R S & D I v I S I O N S

F R O M S T U D E N T B R A N C H E S

www.csi-india.org

REGION-I
The NorthCap University, Gurgaon The NorthCap University, Gurgaon

7-2-2017 - Awareness Program on competitions and
opportunities

9-2-2017 - Event on gaming

REGION-I REGION-III
vivekananda Institute of Professional Studies, Delhi School of Computer Studies, Ahmedabad

21-1-2017 – Prof. Hoda, Mr. Vyas, Mr. Saurabh Agarwal, Prof.
Rattan Sharma, Mr. Jasmeet Sethi and Prof. Vinay Kumar

during State Student Convention on Digital India

3 & 4-2-2017 - CSI State Level Student Convention (Gujarat)
on the them Digital India

 48
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

 49
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

REGION-III REGION-v
Mody University of Science & Technology, Lakshmangarh vasavi College of Engineering (Autonomous), Hyderabad

4-2-2017 to 7-2-2017 - Four day workshop on Cloud Computing 25-1-2017 – Contest on Crossword Puzzle

REGION-v
NMAM Institute of Technology, Nitte Scient Institute of Technology, Hyderabad

28-1-2017 – Workshop on User Centered Design 17 & 18-2-2017 - Workshop on Python Programming

PvP Siddhartha Institute of Technology, vijayawada Geethanjali Institute of Science & Technology, Nellore

4-2-2017 – CSI Student Branch Inauguration 11-2-2017 – One day workshop on MongoDB

Stanley College of Engineering & Technology for Women, Hyderabad

17-2-2017 - Guest Lecture on What is Engineering 20 to 22-2-2017 - Certification on Programming in C

F R O M S T U D E N T B R A N C H E S

www.csi-india.org
 50

C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

F R O M S T U D E N T B R A N C H E S

REGION-v
Adikavi Nannaya University, Rajahmundry Chalapathi Institute of Engineering and Technology, Guntur

14-2-2017 – Prof. M Mutyalu, VC inaugurated the Student
Branch

11 & 12-2-2017 - Second National Conference on Recent
Advances in Computer Science & Engineering

CMR Technical Campus, Hyderabad

9-2-2017 - Seminar on Study abroad Awareness 16-2-2017 - Guest Lecture on Java App. Development with SDLC
NBKR Institute of Science and Technology, Nellore

30 & 31-1-2017 - Two days Workshop on Web Application
Development

17-2-2017 - One Day Workshop on Data Science Research

Amrita vishwa vidyapeetham (University), Bangalore GITAM University, Bangalore

3-2-2017 – Distinguished Speaker Program on
Autonomous Mobile Robots Developed at CAIR

18-2-2017 – Student Branch Inauguration

 51
C S I C o m m u n I C a t I o n S | m a R C H 2 0 1 7

REGION-v REGION-vI
Sasi Institute of Tech. & Engg., Tadepalligudem MGM’s Jawaharlal Nehru Engg. College, Aurangabad

11-2-2017 – Prof. Raghavendra Rao during Guest Lecture on Recent
Trends in Data Mining

28 & 29-1-2017 – Technical Student Convention

REGION-vI
Shri Ramdeobaba College of Engg. and Mgmt., Nagpur Late G N Sapkal College of Engineering Anjaneri, Nashik

18 to 20-1-2017 – Polaris2K17, a National Level Technical
Symposium

6-2-2017 – Prof. Wankhade, Mr. Sudhir Kulkarni, Mr. Rajesh
& Mr. Kaith during Microsoft Technology Day Celebration

Kavikulguru Institute of Technology and Science, Nagpur All India Shri Shivaji Memorial Society's Institute of IT, Pune

23-1-2017 – Motivational and Patent Registration Seminar by
Mr. Vijay Mhaske

5 to 18-12-2016 – Two Weeks Industrial Training Program

Guru Gobind Singh Polytechnic, Nashik

4-2-2017 – Mr. Sudhir Gorade during Guest lecture on
Personality development

4-2-2017 – Mr. Ravi Bhave during Guest lecture on Database
Management System with SQL

F R O M S T U D E N T B R A N C H E S

 Registered with Registrar of News Papers for India - RNI 31668/1978 If undelivered return to :
 Regd. No. MCN/222/20l5-2017 Samruddhi Venture Park, Unit No.3,
 Posting Date: 10 & 11 every month. Posted at Patrika Channel Mumbai-I 4th floor, MIDC, Andheri (E). Mumbai-400 093
 Date of Publication: 10th of every month

REGION-vI
K K Wagh Institute of Engg. Education & Research, Nashik All India Shri Shivaji Memorial Society's Institute of IT, Pune

16-2-2017 - Mr Sanjeev Mishra during Expert Talk on Secure
Socket Layer

7 & 8-2-2017 – Regional Level Student Convention for
Region-VI

REGION-vII
S A Engineering College, Chennai Knowledge Institute of Technology, Salem

22-2-2017 – Mr Kathiresan is elaborating on the Mission and
Benefits of CSI during CSI Awareness Programme

 17-2-2017 & 18-2-2107 – CSI State Level Student Convention

valliammai Engineering College, Kattankulathur St Joseph's Institute of Technology, Chennai

10-2-2017 - Seminar on Internet of Things 2-2-2017 - Young Talent Search in Code Debugging & Poster
Design

Kongu Engineering College, Erode Kongu Engineering College, Erode

4-2-2017 - Web Designing using HTML and Java Script 18-2-2017 – Dr Thangarajan, HOD, CSE inaugurating the
Technical symposium ENVISTAS-2K17

